Clumped isotope,Carbonate reservoirs,Temperature,Fluid properties,Diagenesis,"/> 二元同位素在碳酸盐岩储层研究中的作用

天然气地球科学

• 天然气地质学 • 上一篇    下一篇

二元同位素在碳酸盐岩储层研究中的作用

胡安平,沈安江,潘立银,王永生,李娴静,韦东晓   

  1. 1.中国石油杭州地质研究院,浙江 杭州 310023;
    2.中国石油碳酸盐岩储层重点实验室,浙江 杭州 310023
  • 收稿日期:2017-07-24 修回日期:2017-12-01 出版日期:2018-01-10 发布日期:2018-01-10
  • 作者简介:胡安平(1982-),女,浙江台州人,高级工程师,博士,主要从事碳酸盐岩储层成因及实验研究.E-mail:huap_hz@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项课题“寒武系—中新元古界碳酸盐岩规模储层形成与分布研究”(编号:2016ZX05004002);中国石油天然气股份有限公司国际合作项目“深层碳酸盐岩及深水沉积储层评价与预测技术”(编号:2016B-0402-01)联合资助.
     

The implication and significance of clumped isotope in carbonate reservoirs

Hu An-ping,Shen An-jiang,Pan Li-yin,Wang Yong-sheng,Li Xian-jing,Wei Dong-xiao   

  1. 1.PetroChina Hangzhou Research Institute of Geology,Hnagzhou 310023,China;
    2.CNPC Key Laboratory of Carbonate Reservoirs,Hangzhou 310023,China
  • Received:2017-07-24 Revised:2017-12-01 Online:2018-01-10 Published:2018-01-10

摘要:

碳酸盐岩二元同位素是碳酸盐岩温度计,通过二元同位素可计算碳酸盐岩形成温度和流体氧同位素从而判别成岩环境,在碳酸盐岩储层成岩作用研究中发挥着重要作用。选取3组典型的碳酸盐岩样品,从二元同位素入手,结合碳、氧、锶同位素,解剖碳酸盐岩的成岩环境,总结二元同位素在碳酸盐岩储层成岩环境研究中的指示意义:①对于类型简单、未经历复杂成岩改造的碳酸盐岩,二元同位素计算结果可以直接指示其形成温度和流体性质从而判别成岩环境;②若无后期流体加入发生成岩改造,仅仅受到埋藏高温的影响,当埋藏温度达到一定值,碳酸盐岩二元同位素会受环境温度影响而发生变化使得计算的温度升高,白云石比方解石更能保持碳酸盐岩二元同位素值不变,此时流体氧同位素反映的仍是矿物初始形成环境的特征;③如果后期流体加入而发生成岩改造,无论方解石还是白云石,其二元同位素信息都会发生变化,最终二元同位素记录的则是矿物初始形成环境和后期流体加入成岩改造环境的混合结果。

关键词: 二元同位素, 碳酸盐岩储层, 温度, 流体性质, 成岩环境

Abstract:

Carbonate clumped isotope has become a new kind of carbonate thermometry in recent years.After calculated from clumped isotope,the carbonate formation temperature and the oxygen isotope of the diagenetic fluids could be derived,which are of great significance to the study of diagenetic environment of carbonate reservoirs.Three kinds of typical carbonates were collected for clumped isotope and other elements isotope study,to conclude the implication of clumped isotope in the carbonate reservoirs diagenesis:①for simple samples without complex diagenetic modification,the clumped isotope and its calculated results directly indicate the temperature and fluid properties of the diagenetic environment;②for the samples only influenced by burial high temperature,the clumped isotope temperature might change and reflect the burial environment,but the oxygen isotope unchanged and indicated the original forming environment;③for the samples obviously reformed by post-diagenesis due to post-fluid entering,the clumped isotope temperature and oxygen isotope of the fluid will change in both calcite and dolomite,indicating the mixed result of the carbonate formation environment and post-diagenetic environment.
 

Key words: Clumped isotope')">

中图分类号: 

  • TE122
[1]Zhang Xiulian.Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J].Acta Sedimentologica Sinica,1985,3(4):20-33.
张秀莲.碳酸盐岩中氧、碳稳定同位素与古盐度,古水温的关系[J].沉积学报,1985,3(4):20-33.
[2]Chen Rongkun.Application of stable oxygen and carbon isotope in the research of carbonate diagenetic environment[J].Acta Sedimentologica Sinica,1994,12(1):11-21.
陈荣坤.稳定氧同位素在碳酸盐岩成岩环境中的应用[J].沉积学报,1994,12(1):11-21.
[3]Dickson J A D,Montanez I P,Saller A H.Hypersaline burial diagenesis delineated by component isotopic analysis,Late Paleozoic limstones,West Texas[J].Journal of Sedimentary Research,2001,71(3):372-379.
[4]Kim S T,O’Neil J R.Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J].Geochimica et Cosmochimica Acta,1997,61(16):3461-3475.
[5]Ferry J M,Passey B H,Vasconcelos C,et al.Formation of dolomite at 40-80℃ in the Latemar carbonate buildup,Dolomites,Italy,from clumped isotope thermometry[J].Geology,2011,39(6):571-574.
[6]Loyd S J,Dickson J,Scholle P A,et al.Extensive,uplift-related and non-fault-controlled spar precipitation in the Permian Capitan Formation[J].Sedimentary Geology,2013,298(6):17-27.
[7]Loyd S J,Dickson J,Boles J R,et al.Clumped-Isotope constraints on cement paragenesis in septarian concretions[J].Journal of Sedimentary Research,2014,84(12):1170-1184.
[8]Loyd S J,Corsetti F A,Eagle R A,et al.Evolution of Neoproterozoic Wonoka-Shuram Anomaly-aged carbonates:Evidence from clumped isotope paleothermometry[J].Precambrian Research,2015,264:179-191.
[9]Millan M I,Machel H G,Bernasconi S M.Constraining temperatures of formation and composition of dolomitizing fluids in the upper Devonian Nisku Formation (Alberta,Canada) with clumped isotopes[J].Journal of Sedimentary Research,2016,86(2):107-112.
[10]Winkelstern I Z,Lohmann K C.Shallow burial alteration of dolomite and limestone clumped isotope geochemistry[J].Geology,2016,44(6):467-470.
[11]Liu Qi,Tang Mao,Liu Yun.The method of clumped isotope[J].Bulletin of Mineralogy,Petrology and Geochemistry,2009,28(supplement):93.
刘琪,唐茂,刘耘.二元同位素(Clumped isotope)方法的介绍[J].矿物岩石地球化学通报,2009,28(增刊):93.
[12]Ma Xiufeng,Zhang Zhaofeng,Yan Shuang et al.An introduction to clumped isotope[J].Journal of Earth Environment,2012,3(4):950-959.
马秀峰,张兆峰,严爽,等.耦合同位素简介[J].地球环境学报,2012,3(4):950-959.
[13]Ji Shunchuan,Peng Tingjiang,Nie Junsheng,et al.Quantitative paleotemperature reconstruction of the Chiese Loess Plateau:A review[J].Marine Geology & Quaternary Geology,2013,33(3):151-158.
季顺川,彭廷江,聂军胜,等.黄土高原微生物膜类脂物和碳酸盐岩二元同位素重建古温度的研究进展[J].海洋地质与第四纪地质,2016,33(3):151-158.
[14]Zheng Jianfeng,Li Jin,Ji Hancheng,et al.Clumped isotope thermometry and its application in dolomite reservoir:A case study of the Middle-Lower Cambrian in Traim Basin[J].Marine Origin Petroleum Geology,2017,22(2):1-7.
郑剑锋,李晋,季汉成,等.二元同位素测温技术及其在白云岩储层成因研究中的应用[J].海相油气地质,2017,22(2):1-7.
[15]Eiler J M,Schauble E A.8O-3C-6O in Earth's atmosphere[J].Geochimica et Cosmochimica Acta,2004,68 (23),4767-4777.
[16]Eiler J M,Garzione C,Ghosh P.Response to comment on “Rapid uplift of the altiplano revealed through 3C-8O bonds in paleosol carbonates[J].Science,2006,314:5800.
[17]Schauble E A,Ghosh P,Eiler J.Preferential formation of 3C-8O bonds in carbonate minerals,estimated using first principle lattice dynamics[J].Geochimica et Cosmochimica Acta,2006,70 (10):2510-2529.
[18]Eiler J M.“Clumped-isotope” geochemistry-The study of naturally-occurring,multiply-substituted isotopologues[J].Earth and Planetary Science Letters,2007,262(3-4):309-327.
[19]Came R E,Eiler J M,Veizer J,et al.Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic Era[J].Nature,2007,449(13):198-202.
[20]Eiler J M.Paleoclimate reconstruction using carbonate clumped isotope thermometry[J].Quaternary Science Reviews,2011,30(25):3575-3588.
[21]Ghosh P,Adkins J,Affek H,et al.3C-8O bonds in carbonate minerals:A new kind of paleothermometer[J].Geochimica et Cosmochimica Acta,2006,70 (6):1439-1456.
[22]Ghosh P,Eiler J M,Campana S E,et al.Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths[J].Geochimica et Cosmochimica Acta,2007,71(11):2736-2744.
[23]Affek H P,Bar-Matthews M,Ayalon,et al.Glacial/inter-glacial temperature variations in Soreq cave Speleothemsas recorded by“clumped isotope” thermometry[J].Geochimica et Cosmochimica Acta,2008,72(22):5351-5360.
[24]Passey B H,Levina N E,Cerling T E,et al.High-temperature environments of human evolution in East Africa based on bond ordering in paleosolcarbonates[J].Earth and Planetary Sciences,2010,107(25):11245-11249.
[25]Suarez M B,Passey B H,Kaakinen A.Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene[J].Geology,2011,39(12):1151-1154.
[26]Anderson T F,Arthur M A.Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems[C]// Arthur M A,Anderson T F,Kaplan I R,et al.Stable Isotopes in Sedimentary Geology.Dallas:SEPM Short Course,1983:1-151.
[27]MacDonald J,John C,Girard J P.Dolomitization processes in hydrocarbon reservoirs:Insight from geothermometry using clumped isotopes[J].Procedia Earth and Planetary Science,2015,13(11):265-268.
[28]Shenton B J,Grossman E L,Passey B H,et al.Clumped isotope thermometry in deeply buried sedimentary carbonates:The effects of bond reordering and recrystallization[J].GSA Bulletin,2015,127(7/8):1036-1051.
[29]Budd D A,Hammes U,Ward W B.Cathodoluminescence in calcite cements:new insights on Pb and Zn sensitizing,Mn activation,and Fe quenching at low trace-element concentrations[J].Journal of Sedimentary Research,2000,70(1):217-226.
[30]Pan Liyin,Zhang Jianyong,Hu Anping,et al.Paucity of pervasive dolomitization in Upper Permian Changxing reef limestones in the east of Sichuan Basin:Cause and implication[J].Marine Origin Petroleum Geology,2015,20(3):28-32.
潘立银,张建勇,胡安平,等.四川盆地东部长兴组礁灰岩缺乏大规模白云石化作用的原因分析及启示[J].海相油气地质,2015,20(3):28-32.
[31]Pan Liyin,Shen Anjiang,Shou Jianfeng,et al.Fluid inclusion and geochemical evidence for the origin of sparry calcite cements in Upper Permian Changxing reefal limestones,eastern Sichuan Basin (SW China)[J].Journal of Geochemical Exploration,2016,171:124-132.
[32]Wei Xi,Zhu Yongjun,Yin Jihong,et al.Constrains and growing trend of biological reef in South China Sea Basin[J].Special Oil & Gas Reservoirs,2006,13(1):7-13.
魏喜,祝永军,尹继红,等.南海盆地生物礁形成条件及发育趋势[J].特种油气藏,2006,13(1):7-13.
[33]Zhang Daojun,Liu Xinyu,Wang Yahui,et al.Sedimentary evolution and reservoir characteristics of carbonate rocks since Late Miocene in Xisha area of the South China Sea[J].Earth Science:Journal of China University of Geosciences,2015,40(4):606-614.
张道军,刘新宇,王亚辉,等.西沙地区晚中新世以来碳酸盐岩的沉积演化及储层特征[J].地球科学:中国地质大学学报,2015,40(4):606-614.
[34]He Qixiang,Zhang Mingshu.Origin of Neogene dolomites in Xisha islands and their significance[J].Marine Geology & Quaternary Geology,1990,10(2):45-55.
何起祥,张明书.西沙群岛新第三纪白云岩的成因与意义[J].海洋地质与第四纪地质,1990,10(2):45-55.
[35]Wei Xi,Zhu Yongjun,Xu Hong,et al.Discussion on Neogene dolostone forming condition in Xisha Islands evidences from isotope C and O and fluid inclosures[J].Acta Petrologica Sinica,2006,22(9):2394-2404.
魏喜,祝永军,许红,等.西沙群岛新近纪白云岩形成条件的探讨:C、O 同位素和流体包裹体证据[J].岩石学报,2006,22(9):2394-2404.
[36]Wei Xi,Jia Chengzao,Meng Weigong,et al.Mineral content and geochemistry characteristics of carbonate rock in well No.Xichen-1 and geological significance[J].Acta Petrologica Sinica,2007,23(11):3015-3025.
魏喜,贾承造,孟卫工,等.西琛1井碳酸盐岩的矿物成分、地化特征及地质意义[J].岩石学报,2007,23(11):3015-302.
[37]Wang Zhenfeng,Shi Zhiqiang,Zhang Daojun et al.Microscopic features and genesis for Miocene to Pliocene dolomite in Well Xike-1,Xisha Islands[J].Earth Science:Journal of China University of Geosciences,2015,40(4):633-644.
王振峰,时志强,张道军,等.西沙群岛西科1井中新统—上新统白云岩微观特征及成因[J].地球科学:中国地质大学学报,2015,40(4):633-644.
[38]Li Z,Goldstein R H,Franseen E K.Ascending freshwater-mesohaline mixing:A new scenario for dolomitization[J].Journal of Sedimentary Research,2013,83(3):277-283.
[39]Hodell D A,Woodruff F.Variations in strontium isotopic ratio of the seawater during the Miocene:Stratigraphic and geochemical implications[J].Paleoceanography,1994,9(3):405-426.
[40]Nothdurft L D,Webb G E,Kamber B S.Rare earth element geochemistry of Late Devonian reefal carbonates,Canning Basin,Western Australia:Confirmation of a seawater REE proxy in ancient limstones[J].Geochimica et Cosmochimica Acta,2004,68(2):263-283.
[41]Hao Yi,Zhou Jingao,Chen Xu,et al.Genesis and Geological Significance of Upper Sinian Dengying Dolostone with Grape-lace Shaped Cement,Sichuan Basin[J].Marine Origin Petroleum Geology,2015,20(4):57-64.
郝毅,周进高,陈旭,等.四川盆地灯影组“葡萄花边”状白云岩成因及地质意义[J].海相油气地质,2015,20(4):57-64.
[42]Veizer J,Ala D,Azmy K,et al.87Sr/86Sr,δ3C and δ8O evolution of Phanerozoic seawater[J].Chemical Geology,1999,161:59-88.
[43]Lei Bianjun,Qiang Zitong,Chen Jigao.Diagenesis and pore evolution of Upper Permian reefs,eastern Sichuan Province[J].Oil & Gas Geology,1991,12(4):364-375.
雷卞军,强子同,陈季高.川东上二叠统生物礁成岩作用与孔隙演化[J].石油与天然气地质,1991,12(4):364-375.
[44]Korte C,Kozur H,Bruckschen P,et al.Strontium isotope evolution of Late Permian and Triassic seawater[J].Geochimica et Cosmochimica Acta,2003,67(1):47-62.
[45]Bonifacie M,Calmels D,Eiler J.Clumped isotope thermometry of marbles as an idicator of the closure temperatures of calcite and dolomite with respect to solid-state reordering of C-O bonds[J].Mineralogical Magazine,2013,77(77):738.
[46]Henkes G A,Passey B H,Grossman E L,et al.Temperature limits for preservation of primary calcite clumped isotope paleotemperatures[J].Geochimica et Cosmochimica Acta,2014,139:362-382.
 
[1] 孙可欣,李贤庆,魏强,梁万乐,李剑,张光武. 利用流体历史分析技术研究库车坳陷大北气田油气充注史[J]. 天然气地球科学, 2018, 29(9): 1289-1300.
[2] 姜凤光,王小林,陈志海. 二氧化碳侵入前油气藏流体性质定量分析[J]. 天然气地球科学, 2017, 28(3): 488-493.
[3] 杜洋,樊太亮,高志前. 塔里木盆地中下奥陶统碳酸盐岩地球化学特征及其对成岩环境的指示——以巴楚大板塔格剖面和阿克苏蓬莱坝剖面为例[J]. 天然气地球科学, 2016, 27(8): 1509-1523.
[4] 李靖,李相方,王香增,李莹莹,石军太,冯东,彭泽阳,于鹏亮. “一点法”不同温度吸附曲线预测模型[J]. 天然气地球科学, 2016, 27(6): 1116-1127.
[5] 张明峰,熊德明,吴陈君,马万云,孙丽娜,妥进才. 准噶尔盆地东部地区侏罗系烃源岩及其低熟气形成条件[J]. 天然气地球科学, 2016, 27(2): 261-267.
[6] 王鹏,刘四兵,沈忠民,黄飞,罗自力,陈飞. 四川盆地上三叠统气藏成藏年代及差异[J]. 天然气地球科学, 2016, 27(1): 50-59.
[7] 王振卿,王宏斌,张虎权,李慧珍. 多参数解释量板在碳酸盐岩缝洞型储层油气预测中的应用[J]. 天然气地球科学, 2015, 26(S1): 162-167.
[8] 杨平,印峰,余谦,汪正江,刘家洪,张娣,张道光. 四川盆地东南缘有机质演化异常与古地温场特征[J]. 天然气地球科学, 2015, 26(7): 1299-1309.
[9] 石书缘,胡素云,刘伟,徐兆辉,李伯华,武娜. 综合运用碳氧同位素和包裹体信息判别古岩溶形成期次[J]. 天然气地球科学, 2015, 26(2): 208-217.
[10] 陈哲龙,柳广弟,卢学军,黄志龙,丁修建. 应用流体包裹体研究储层油气充注特征——以二连盆地为例[J]. 天然气地球科学, 2015, 26(1): 60-70.
[11] 赵玉集,郭为,熊伟,左罗,高树生,刘洪林,苗雪. 页岩等温吸附/解吸影响因素研究[J]. 天然气地球科学, 2014, 25(6): 940-946.
[12] 张君峰,段晓文. 论缝洞型碳酸盐岩油气藏储量评估单元划分[J]. 天然气地球科学, 2014, 25(11): 1752-1756.
[13] 李振华,邱隆伟,孙宝强,唐 勇,玉华,朱士波. 准噶尔盆地中拐地区佳木河组流体包裹体特征及成藏期次划分[J]. 天然气地球科学, 2013, 24(5): 931-939.
[14] 梁建设,王琪,郝乐伟,唐俊,廖朋,田兵. 西湖凹陷渐新统花港组储层砂岩成岩环境演化探讨[J]. 天然气地球科学, 2012, 23(4): 673-680.
[15] 李克蓬,陈红汉,丰勇. 深层碳酸盐岩流体包裹体均一温度特征及应用探讨[J]. 天然气地球科学, 2012, 23(4): 756-763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!