天然气地球科学

• 天然气勘探 • 上一篇    下一篇

基于SOM和HSV染色技术的致密砂岩储层地震相分析

张艳,张春雷,高世臣   

  1. 1.中国地质大学(北京)能源学院,海相储层演化与油气富集机理教育部重点实验室,北京 100083;
    2.北京中地润德石油科技有限公司,北京 100083;
    3.中国地质大学(北京)数理学院,北京 100083
  • 收稿日期:2017-08-20 修回日期:2017-09-29 出版日期:2018-02-10 发布日期:2018-02-10
  • 作者简介:张艳(1987-),女,内蒙古赤峰人,博士在读,主要从事石油与天然气地质学研究.E-mail:zhyan_07@163.com.
  • 基金资助:

    国家科技重大专项(编号:2016ZX05014-001);国家自然科学基金(编号:41172130,U1403191);中央高校基本科研项目(编号:2-9-2015-209)联合资助.

Seismic facies analysis of tight sandstone reservoir based on SOM and HSV color technique

Zhang Yan,Zhang Chun-lei,Gao Shi-chen   

  1. 1.School of Energy Resources,China University of Geosciences(Beijing),Key Laboratory of Marine
    Reservoir Evolution and Hydrocarbon Enrichment Mechanism,Ministry of Education,Beijing 100083,China;
    2.Beijing Zhongdirunde Petroleum Technology Co. Ltd.,Beijing 100083,China;
    3.School of Science,China University of Geosciences(Beijing),Beijing 100083,China
  • Received:2017-08-20 Revised:2017-09-29 Online:2018-02-10 Published:2018-02-10

摘要:

地震相分析是致密砂岩储层预测的一项重要技术,可以描述地层相带的变化。针对自组织神经网络(Self-Organizing Map,SOM)在地震相解释过程中可视化差、解释精度低等问题,研发了一种基于SOM和HSV(Hue Saturation Value)染色技术的地震相分析技术。该方法使用收缩拓扑坐标算法对网格节点进行计算,借助HSV模型根据网格节点的位置进行染色,使得相近的位置具有相同的颜色,清晰地展示出高维输入空间的分布情况。为了验证方法的可行性,以苏里格气田东部召30区块为研究对象,通过地震属性与气层厚度叠合图以及AVO正演模拟,选取了对储层比较敏感的均方根振幅、平均瞬时频率、AVO截距和梯度等4种地震属性,运用自组织神经网络和HSV染色技术开展致密砂岩的地震相分析,并通过K均值对网格节点聚类,得到盒8段沉积相展布特征,能清晰地刻画南北向条带状河道分布,分析结果与先验地质认识较为吻合。该方法为沉积相展布特征的分析提供了一种更好的可视化方法,具有一定的应用价值。

关键词: 致密砂岩储层, 地震相分析, SOM技术, HSV染色技术, 收缩拓扑坐标算法

Abstract:

Seismic facies analysis is an important technique for predicting tight sandstone reservoirs,which can be used to describe the changes between sedimentary facies.For the problem of poor visualization and low precision of interpretation in the interpretation process of seismic facies,a seismic facies analytical technique based on SOM and HSV color technique is carried out.Firstly,the coordinates of the grid are calculated firstly using the contraction topological algorithm,and then the HSV model is used to color the nodes according to the coordinates of the nodes.In this way,the closer positions have the same color,which can clearly show the distribution of the high-dimensional input space.In order to verify the validity of the method,the Z30 area in the east of the Sulige Gas Field is taken as an example.Firstly,through the overlaid map between the seismic attributes and the thickness of the gas layer and also the AVO forward modeling,seismic attributes,such as RMS,average instantaneous frequency,AVO intercept and gradient,are chosen which are sensitive to the reservoir.Finally,the SOM and HSV color techniques are carried out in the process of seismic facies analysis.On the basis,the K-means method is used to cluster the grid nodes.By analyzing the distribution characteristics of sedimentary facies in He 8 member,the channel is clearly described from north to south and the results are in good agreement with the prior geological knowledge.Through analyzing the process,we can see that this method provides a better visualization method for the analysis of sedimentary facies distribution,which has certain value in the practical application.

Key words: Tight sandstone reservoir, Seismic facies analysis, SOM, HSV color, Contraction topological algorithm

中图分类号: 

  • TE132.1

[1]Zhang Jie,Zhang Zhenhong,Xin Honggang,et al.Application of seismic facies analysis technique for reservoir prediction in the Maling Oilfield[J].Natural Gas Geoscience,2012,23(3):590-595.
张杰,张振红,辛红刚,等.地震相分析技术在马岭油田储层预测中的应用[J].天然气地球科学,2012,23(3):590-595.
[2]Du H K,Cao J X,Xue Y J,et al.Seismic facies analysis based on self-organizing map and empirical mode decomposition[J].Journal of Applied Geophysics,2015,112(1):52-61.
[3]Wang Yongwei,Li Rongxi,Lai Shenghua.Depositional system distribution characteristics based on seismic data:Case study of the lower Benxi Formation,Gaojiahe 3-D block,Yanchang exploration area,Orodos Basin,China[J].Natural Gas Geosciences,2017,28(6):888-897.
王永炜,李荣西,赖生化.基于地震信息的沉积体系平面分布特征研究——以鄂尔多斯盆地延长探区高家河三维区本溪组下部沉积体系为例[J].天然气地球科学,2017,28(6):888-897.
[4]Matos M C D,Osorio P L M,Johann P RS.Unsupervised seismic facies analysis using wavelet transform and self-organizing maps[J].Geophysics,2007,72(1):9-21.
[5]Song C,Liu Z,Wang Y,et al.Multi-waveform classification for seismic facies analysis[J].Computers & Geosciences,2016,101(1):1-9.
[6]Himberg J.A SOM based cluster visualization and its application for false coloring[C].Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks,2000,587-592.
[7]Matos M C D,Marfurt K J,Johann P R S.Seismic interpretation of self-organizing maps using 2D color displays[J].Revista Brasileira de Geofisica,2010,28(4):631-642.
[8]Roden R,Smith T,Sacrey D.Geologic pattern recognition from seismic attributes:Principal component analysis and self-organizing maps[J].Interpreation,2015,3(4):SAE59-SAE83.[ZK)]
[9]Zhang Yan,Zheng Xiaodong,Li Jinsong,et al.Unsupervised seismic facies analysis technology based on SOM and PSO[J].Chinese Journal of Geophysics,2015,58(9):3412-3423.
张,郑晓东,李劲松,等.基于SOM和PSO的非监督地震相分析技术[J].地球物理学报,2015,58(9):3412-3423.
[10]Kohonen T.Self-organized formation of topologically correct feature maps[J].Biological Cybernetics,1982,43(1):59-69.
[11]Xu Jianhua,Cai Rui.Application of the supervised SOM neural network to oil and gas prediction[J].Geophysical Prospecting for Petroleum,1998,37(3):71-76.许建华,蔡瑞.有监督SOM神经网络在油气预测中的应用[J].石油物探,1998,37(3):71-76.
[12]Villmann T.Topology preservation in self-organizing maps[J].Kohonen Maps,1999,27(2):279-292.
[13]Roy A,Matos M,Marfurt K J.Automatic seismic facies classification with Kohonen self organizing maps-a tutorial[J].Geohorizons,2010,10(1):6-14.
[14]Li Dailin,Wan Jie,Zhu Huafeng,et al.A new technique for recognition of underwater object based on HSV color space[J].Scientia Sinica:Physica,Mechanica & Astronomica,2015,45(8):084209-1-084209-5.
李代林,万杰,朱化凤,等.基于HSV颜色空间的水下物体识别技术研究[J].中国科学:物理学,力学,天文学,2015,45(8):084209-1-084209-5.
[15]Wang Shaofei,An Wenhong,Chen Peng,et al.Characteristics and development techniques of Sulige tight gas pool[J].Natural Gas Geoscience,2013,24(1):138-145.
王少飞,安文宏,陈鹏,等.苏里格气田致密气藏特征与开发技术[J].天然气地球科学,2013,24(1):138-145.
[16]Yuan Zhaowei,Qiang Xiaolong,Gao Shichen,et al.Modeling of different sedimentary facies and assessments for features of spatial structures in the Sulige Gasfield[J].Special Oil and Gas Reservoirs,2017,24(1):77-83.
袁照威,强小龙,高世臣,等.苏里格气田不同沉积相建模方法及空间结构特征评价[J].特种油气藏,2017,24(1):77-83.
[17]Wang Z,Gao J,Wang D,et al.3D seismic attributes for a tight gas sand reservoir characterization of the eastern Sulige Gasfield,Ordos Basin,China[J].Geophysics,2015,80(2):35-43.
[18]Yuan Zhaowei,Chen Long,Gao Shichen,et al.A method of sedimentary facies modeling through integration of multi-seismic attributes based on Markov-Bayes model:An example from Su10 area in the north of Sulige Gasfield [J].Petroleum Geology and Recovery Efficiency,2017,24(3):37-43.
袁照威,陈龙,高世臣,等.基于马尔科夫—贝叶斯模拟算法的多地震属性沉积相建模方法——以苏里格气田苏10区块为例[J].油气地质与采收率,2017,24(3):37-43.
[19]Gao Shichen,Yuan Zhaowei.Seismic attribute in facies predicton-sequential stochastic pattern recognition methods[J].Progress in Geophysics,2016,31(3):1066-1072.
高世臣,袁照威.地震属性在沉积相预测中的方法研究—序贯随机模式识别[J].地球物理学进展,2016,31(3):1066-1072.
[20]Li Jianhua,Liu Baihong,Zhang Yanqing,et al.Oil-bearing reservoir prediction with prestack AVO inversion[J].Oil Geophysical Porspecting,2016,51(6):1180-1186.
李建华,刘百红,张延庆,等.叠前AVO反演在储层含油气性预测中的应用[J].石油地球物理勘探,2016,51(6):1180-1186.

[1] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[2] 杨智峰,曾溅辉,韩菲,冯枭,冯森,张译丹,乔俊程. 鄂尔多斯盆地西南部长6—长8段致密砂岩储层微观孔隙特征[J]. 天然气地球科学, 2017, 28(6): 909-919.
[3] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[4] 张凤奇,钟红利,魏登峰,张凤博,柳伟明,刘伟. 鄂尔多斯盆地陕北斜坡东南部长7段致密砂岩油藏成藏物性下限[J]. 天然气地球科学, 2017, 28(2): 232-240.
[5] 周露,莫涛,王振鸿,朱文慧,尚江伟,陈维力,李梅,张琪. 塔里木盆地克深气田超深层致密砂岩储层裂缝分级分组合特征[J]. 天然气地球科学, 2017, 28(11): 1668-1677.
[6] 刘晓鹏,刘燕,陈娟萍,胡爱平. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.
[7] 陈文浩,王志章,潘潞,李汉林,侯加根. 致密砂岩储层流动单元定量识别方法探讨[J]. 天然气地球科学, 2016, 27(5): 844-850.
[8] 韩文学,陶士振,姚泾利,麻伟娇. 鄂尔多斯盆地陇东地区长7段致密储层精细表征[J]. 天然气地球科学, 2016, 27(5): 820-826.
[9] 高帅,曾联波,马世忠,何永宏,巩磊,赵向原,许文国,唐小梅. 致密砂岩储层不同方向构造裂缝定量预测[J]. 天然气地球科学, 2015, 26(3): 427-434.
[10] 陈宇航,刘震,姚根顺,吕福亮,唐鹏程,陈亮. 一个深水区深层沉积相早期预测方法——以南海北部深水区D凹陷渐新统为例[J]. 天然气地球科学, 2015, 26(11): 2122-2130.
[11] 毕明威,陈世悦,周兆华,商琳,郑国强,张满郎,高立祥. 鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义[J]. 天然气地球科学, 2015, 26(10): 1851-1861.
[12] 陆诗阔,王迪,李玉坤,孟宪军,胡向阳,陈舒薇. 鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J]. 天然气地球科学, 2015, 26(10): 1844-1850.
[13] 畅永刚,史松群,赵玉华,王大兴. 基于SVD法三维地震属性优化技术在苏里格气田含气性预测中的应用[J]. 天然气地球科学, 2012, 23(3): 596-601.
[14] 张博, 李江海, 吴世萍, 陈德友, 袁克学, 巴旦. 大北气田储层裂缝定量描述[J]. 天然气地球科学, 2010, 21(1): 42-46.
[15] 胡明毅;李士祥;魏国齐;杨威;林世国;. 川西前陆盆地上三叠统须家河组致密砂岩储层评价[J]. 天然气地球科学, 2006, 17(4): 456-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!