Shale,Organic,Compressional wave,Shear wave,Rock mechanics,Frequency spectrum analysis,"/> 有机质含量对页岩声波传播特性的影响

天然气地球科学

• 非常规天然气 • 上一篇    下一篇

有机质含量对页岩声波传播特性的影响

康毅力,白佳佳,游利军   

  1. 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 收稿日期:2017-02-26 修回日期:2017-07-07 出版日期:2017-09-10 发布日期:2017-09-10
  • 作者简介:康毅力(1964-),男,天津蓟县人,教授,博士,博士生导师,主要从事储层保护理论及技术、非常规天然气、油气田开发地质的研究与教学工作.E-mail:cwctkyl@163.com.
  • 基金资助:
    国家自然科学基金面上项目“富有机质页岩氧化致裂增渗加速气体传输机理研究”(编号:51674209); 非常规油气层保护四川省青年科技创新研究团队项目(编号:2016TD0016)联合资助.
     

Influence of organic content on acoustic wavepropagation characteristic of organic-rich shale

Kang Yi-li,Bai Jia-jia,You Li-jun   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,
    Southwest Petroleum University,Chengdu 610050,China
  • Received:2017-02-26 Revised:2017-07-07 Online:2017-09-10 Published:2017-09-10

摘要:

有机质是含气页岩的重要组分之一,有机质含量及类型在相当大程度上控制着页岩的孔隙度及含气性。前人工作多关注页岩矿物组分及其赋存方式所导致的声速及力学性质各向异性方面,而对有机质含量与页岩声波传播响应特性的关系则很少研究。以鄂尔多斯盆地三叠系延长组长7段富有机质页岩为研究对象,利用自行研制的SCMS-J型声电测试仪,采集15MPa围压下页岩纵/横波传播信息,分析有机质含量对纵/横波传播速度及页岩力学性能的影响,并运用快速傅里叶变换对采集的岩样声波波形数据进行频谱分析。研究表明:①纵/横波传播速度随着有机质含量增加而减小,纵/横波波速比随着有机质含量增加而增大;②页岩动态剪切模量G、动态体积模量K和动态弹性模量E随着有机质含量增加而降低,而泊松比v随着有机质含量增加而增大;③有机质含量越高,高频部分吸收越明显,主频向低频移动,形心频率fc大小与有机质含量呈负相关。研究成果对基于声波测井信息评价页岩有机质含量及含气性具有一定的借鉴意义。
 

关键词: 页岩, 有机质, 纵波, 横波, 岩石力学, 频谱分析

Abstract:

As the significant component of the gas-bearing shale,the content and type of organic control the porosity and hydrocarbon to a large degree.In the predecessors’ work had been paid on the shale’s velocity and mechanical properties anisotropy,caused by shale’s mineal composition and arrangement anisotropy,while the research on the relationship of organic content and wave propagation characteristic of organic-rich shale was rare.The Chang 7 member of Triassic Yanchang Formation organic-rich shale in Ordos Basin is the object of our research.The information of ultrasonic wave under 15MPa confining pressure was acquired,with the assistant of the SCMS-J equipment developed in-house.The influence of organic matter content on wave propagation speed and mechanical properties of shale was analyzed.Rules of wave form and wave spectrum were researched using fast fourier transform.The following conclusions can be drawn: Firstly,Both compressional and shear wave velocities decrease as organic content increases.The impact of organic content on shear velocity was found to be more significant compared with the response with compressional velocity.Secondly,Both dynamic shear modulus (G),dynamic bulk modulus (K),dynamic Young’s modulus(E) decrease as organic content increases.Poisson’s ratio (v) increases as organic content increases.The more organic content the shale “softer”.Lastly,the higher organic matter content,the high frequency absorption is more obvious,the dominant frequency move to low frequency.Centroid frequency is negatively correlated with organic content.The results of this study have some guiding significance for the prediction of organic matter content by acoustic wave information.
 

Key words: Shale')">

中图分类号: 

  • TE357

[1]Zou Caineng,Zhang Guosheng,Yang Zhi,et al.Geological concepts、characteristics、resource potential and key techniques of unconventional hydrocarbon:On unconventional petroleum geology[J].Petroleum Exploration and Development,2013,40(4):385-399,454.[邹才能,张国生,杨智,等.非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J].石油勘探与开发,2013,40(4):385-399,454.]
[2][ZK(3#]Zou Caineng,Tao Shizhen,Bai Bin,et al.Differences and relations between unconventional and conventional oil and gas[J].China Petroleum Exploration,2015,20(1):1-16.[邹才能,陶士振,白斌,等.论非常规油气与常规油气的区别和联系[J].中国石油勘探,2015,20(1):1-16.]
[3]Zhang Mingming,Liang Lixi,Jiang Shaolong.Influence of different pore structures of carbonate rock on time and frequency characteristics of acoustic wave spread[J].Fault-Block Oil and Gas Field,2016,23(6):825-828.[张明明,梁利喜,蒋少龙.不同孔隙结构碳酸盐岩对声波时频特性的影响[J].断块油气田,2016,23(6):825-828.]
[4]Zhang Shenhe,Peng Suping,Liu Yuxiang.Experimental study on properties of acoustic velocity in crack rocks of coal-bearing strata[J].Journal of Shandong University of Science and Technology,2006,25(1):28-31.[张慎河,彭苏萍,刘玉香.含煤地层裂隙岩石声波速度特征试验研究[J].山东科技大学学报:自然科学版,2006,25(1):28-31.]
[5]Meng Zhaoping,Zhang Jichang,Joachim Tiedemann.Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks[J].Chinese Journal of Geophysics,2006,49(5):76-81.[孟召平,张吉昌,Joachim Tiedemann.煤系岩石物理力学参数与声波速度之间的关系[J].地球物理学报,2006,49(5):1505-1510.]
[6]Chen Qiao,Liu Xiangjun,Liu Hong,et al.An experimental study of ultrasonic penetration through bedding shale reservoirs[J].Natural Gas Industry,2013,33(8):140-144.[陈乔,刘向君,刘洪,等.层理性页岩地层超声波透射实验[J].天然气工业,2013,33(8):140-144.]
[7]Wang Guibin,Yang Cunhe,Guo Yingtong,et al.Experimental research on distribution characteristics and influential factors of P-wave velocity for rocks in northeast region of Sichuan Province[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(supplement 1):2834-2842.[王贵宾,杨春和,郭应同,等.川东北地区岩石纵波速度分布特征和影响因素的试验研究[J].岩石力学与工程学报,2011,30(增刊1):2834-2842.]
[8]Liu Xiangjun,Liu Hong,Xu Xiaolei,et al.Experimental research on acoustic wave propagation characteristic of low porosity and permeability sandstone under loading conditions[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(3):560-567.[刘向君,刘洪,徐晓雷,等.低孔低渗砂岩加载条件下的声波传播特性实验研究[J].岩石力学与工程学报,2009,28(3):560-567.]
[9]Zhao Mingjie,Feng Delun.Ultrasonic velocity and attenuation of rock under uniaxial loading[J] Chinese Journal of Rock Mechanics and Engineering,1999,18(1):50-54.[赵明阶,吴德伦.单轴加载条件下岩石声学参数与应力的关系研究[J].岩石力学与工程学报,1999,18(1):50-54.]
[10]Wang Peng,Xu Jinyu,Liu Shi,et al.Mechanical properties and ultrasonic time-frequency characteristics of thermally damaged sandstone[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1897-1904.[王鹏,许金余,刘 石,等.热损伤砂岩力学与超声时频特性研究[J].岩石力学与工程学报,2014,33(9):1897-1904.]
[11]Chen Xu,Yu Jin,Li Hong,et al.Experimental study of propagation characteristics of acoustic wave in rocks with different lithologies and water contents[J].Rock and Soil Mechanics,2013,34(9):2527-2533.[陈旭,俞缙,李宏,等.不同岩性及含水率的岩石声波传播规律试验研究[J].岩土力学,2013,34(9):2527-2533.]
[12]Zhou Zhiguo,Zhu Hehua,Chen Wei,et al.Experimental study on acoustic wave propagation character of water saturated rock samples[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(5):911-917.[周治国,朱合华,陈伟,等.饱水岩样声波传播规律的试验研究[J].岩石力学与工程学报,2006,25(5):911-917.]
[13]Wang Yu,Li Xiao,Hu Ruilin,et al.Review of research process and application of research process and application of ultrasonic testing for rock and soil[J].Journal of Engineering Geology,2015,23(2):287-300.[王宇,李晓,胡瑞林,等.岩土超声波测试研究进展及应用综述[J].工程地质学报,2015,23(2):287-300.]
[14]Heng Shuai,Yang Chunhe,Zhang Baoping,et al.Experimental research on anisotropic properties of shale[J].Rock and Soil Mechanics,2015,36(3):609-616.[衡帅,杨春和,张保平,等.页岩各向异性特征的试验研究[J].岩土力学,2015,36(3):610-616.]
[15]Deng Jixin,Shi Ge,Liu Ruixun,et al.Analysis of the velocity anisotropy and its causative factors in Shales and Mudstones[J].Chinese Journal of Geophysics,2004,47(5):972-979.[邓继新,史謌,刘瑞珣,等.泥岩、页岩声速各向异性及其影响因素分析[J].地球物理学报,2004,47(5):862-868.]
[16]Xu Jingbin,Yang Chunhe,Wu Wen,et al.Experimental study of mechanics anisotropy and deformation characteristics of gas shale[J].Mining Research and Development,2013,33(4):16-19.[徐敬宾,杨春和,吴文,等.页岩力学各向异性及其变形特征的试验研究[J].矿业研究与开发,2013,33(4):16-19.]
[17]Xiong Jian,Liang Lixi,Liu Xiangjun,et al.Experimental study on acoustic penetration through the Longmaxi Formation shale rock in south region of Sichuan Basin[J].Chinese Journal of Underground Space and Engineering,2014,10(5):1071-1077.[熊健,梁利喜,刘向君,等.川南地区龙马溪组页岩岩石声波透射实验研究[J].地下空间与工程学报,2014,10(5):1071-1077.]
[18]Chen Mingjun,Kang Yili,You Lijun,et al.The response of electrical parameters of saturated tight sandstone to effective stress changes[J].Progress in Geophysics,2014,29(3):1128-1132.[陈明君,康毅力,游利军,等.饱和水致密砂岩电学参数对有效应力变化的响应[J].地球物理学进展,2014,29(3):1128-1132.]
[19]Huang Ying,Zhang Zhi,Lei Bin,et al.Statistical Methods and Applications[M].Wuhan:China University of Geosciences Press,2011:192-193.[黄英,张志,雷彬,等.统计学方法与应用[M].武汉:中国地质大学出版社,2011:192-193.]
[20]Asef M R,Nagibi A R.The effect of confining pressure on elastic wave velocities and dynamic to static Youngs modulus ratio[J].Geophysics,2013,78(3):135-142.
[21]Liu Bin,Wang Baoshan,Xi Daoyin,et al.The effects of water saturated cracks on seismic velocity and anisotropy in crustal rocks[J].Chinese Journal of Geophysics,1999,42(5):702-710.[刘斌,王宝善,席道瑛,等.水饱和裂纹对地壳岩样中地震波速及各向异性的影响[J].地球物理学报,1999,42(5):702-710.]
[22]Vernik,Milovac J.Rock physics of organic shales[J].Leading Edge,2011,30(3):318-323.
[23]Mayer L M.Surface area control of organic carbon accumulation in continental shelf sediments[J].Geochimica  Et Cosmochimica Acta,1994,58(4):1271-1284.
[24]Jia Jianliang.Research on the recognition and resource evaluation of the Upper Cretaceous oil shale based on geochemistry-geophysics technique in the Songliao Basin(NE,China)[D].Changchun:Jilin University,2012.[贾建亮.基于地球化学—地球物理的松辽盆地上白垩统油页岩识别与资源评价[D].长春:吉林大学,2012.]
[25]Xie Heping,Chen Zhonghui.Rock Mechanics[M].BeiJing:Science Press,2004:15-16.[谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004:15-16.]
[26]Cheng Peiqing.Digital Signal Processing Tutorial[M].Beijing:Tsinghua University Press,2001:97-122.[程佩青.数字信号处理教程[M].北京:清华大学出版社,2001:97-122.]
[27]Liu Tong,Ma Xuqing,Zhang Xiaoping ,et al.Study on relationship between sound spectrum characteristics and strength of rock[J].West-China Exploration Engineering,2003,15(6):64-66.[刘彤,马旭青,张晓平,等.岩石声谱特征值与强度关系研究[J].西部探矿工程,2003,15(6):64-66.]
[28]Wang Peng,Xu Jinyu,Liu Shi,et al.Mechanical properties and ultrasonic time-frequency characteristics of thermally damaged sandstone[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1897-1904.[王鹏,许金余,刘石,等.热损伤砂岩力学与超声时频特性研究[J].岩石力学与工程学报,2014,33(9):1897-1904.]
[29]Ji Wenming,Song Yan,Jiang Zhenxue et al.Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation,southeastern Sichuan Basin[J].Acta Petrolel Sinica,2016,37(2):182-195.[纪文明,宋岩,姜振学,等.四川盆地东南部龙马溪组页岩微—纳米孔隙结构特征及控制因素[J].石油学报,2016,37(02):182-195.]
[30]Guo Xusheng,Li Yuping,Liu Ruoshui et al.Characteristics and controlling factors of micropore structures of the Longmaxi Shale in the Jiaoshiba area,Sichuan Basin[J].Natural Gas Industry,2014,34(6):9-16.[郭旭升,李宇平,刘若冰,等.四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J].天然气工业,2014,34(6):9-16.]
[31]Wang Shuyan,Hu Run,Ren Dongchao,et al.Genetic types and development mechanism of shale pores-with the example of shale in southeast Sichuan[J].Journal of Shandong University of Science and Technology:Natural Science,2015,34(6):9-15.[王书彦, 胡润, 任东超,等. 页岩孔隙成因类型及其演化发育机理——以川东南地区页岩为例[J]. 山东科技大学学报:自然科学版, 2015, 34(6):9-15.]
[32]Xue Huaqing,Wang Hongyan,Liu Honglin,et al.Adsorption capability and aperture distribution characteristics of shales:taking the Longmaxi Formation shale of Sichuan Basin as an example[J].Acta Petrolei Sinica,2013,34(5):826-832.[薛华庆,王红岩,刘洪林,等.页岩吸附性能及孔隙结构特征——以四川盆地龙马溪组页岩为例[J].石油学报,2013,34(5):826-832.]

[1] 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[5] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[6] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[7] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[8] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[9] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[10] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[11] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[12] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[13] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[14] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[15] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖骞,沈玉林,秦勇,申建,顾娇杨,张春良. 鄂尔多斯盆地东北缘叠置含气系统中菱铁质泥岩测井识别及地质意义[J]. 天然气地球科学, 2017, 28(4): 590 -601 .
[2] 王清辉,冯进. 烃源岩TOC测井评价方法及应用——以珠江口盆地文昌组为例[J]. 天然气地球科学, 2018, 29(2): 251 -258 .
[3] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376 -1382 .