天然气地球科学

• 非常规天然气 • 上一篇    下一篇

上扬子地区下寒武统高演化页岩微观孔隙特征

刘忠宝1,2,3,冯动军3,高波3,李洪文4,聂海宽3   

  1. 1.页岩油气富集机理与有效开发国家重点实验室,北京 100083;
    2.中国石化页岩油气勘探开发重点实验室,北京 100083;
    3.中国石油化工股份有限公司石油勘探开发研究院,北京 100083;
    4.中国石油长庆油田分公司勘探开发研究院,陕西 西安 710018
  • 收稿日期:2017-03-10 修回日期:2017-06-10 出版日期:2017-07-10 发布日期:2017-07-10
  • 作者简介:刘忠宝(1978-),男,黑龙江富锦人,高级工程师,博士,主要从事页岩气地质及碳酸盐岩沉积储层研究. E-mail:liuzb.syky@sinopec.com.
  • 基金资助:

    国家自然科学基金项目(编号:41202103);中国石油化工股份有限公司科技部项目(编号:P15114)联合资助.

Micropore characteristics of high thermal evolution shale in the Lower Cambrian series in Upper Yangtze area

Liu Zhong-bao1,2,3,Feng Dong-jun3,Gao Bo3,Li Hong-wen4,Nie Hai-kuan3   

  1. 1.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development,Beijing 100083,China;
    2.Key Laboratory of Shale Oil/Gas Exploration and Production,SINOPEC,Beijing 100083,China;
    3.Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 100083,China;
    4.Research Institute of Exploration and Development,PetroChina Changqing Oilfield Company,Xi’an 710018,China
  • Received:2017-03-10 Revised:2017-06-10 Online:2017-07-10 Published:2017-07-10

摘要:

为揭示高演化页岩储层微观孔隙特征及储集性能,采用全岩X-射线衍射、有机碳测定、氦气孔隙度测试、低温氮气吸附、高压压汞—吸附联合测定及氩离子抛光—扫描电镜等多种技术方法,开展了上扬子地区下寒武统高演化页岩微观孔隙结构、类型及其特征研究。结果表明:页岩比表面积介于0.46~34.70m2/g之间,平均为12.36 m2/g,总孔容介于(0.43~11.29)×10-3cm3/g之间,平均为4.65×10-3cm3/g,孔径以小孔(2~10nm)为主,其次为中孔(10~50nm),小孔孔容、TOC与比表面积呈正线性关系;页岩发育有机质孔、粒间孔、粒内孔、黏土矿物层间孔、黄铁矿晶间孔、构造微裂缝及成岩微裂缝7种孔隙类型,其中微裂缝全区普遍发育,四川盆地内部以粒间孔、黏土矿物层间孔及有机质孔为主,四川盆地之外仅发育有机质孔,形态以不规则形、狭缝形为主,无机矿物质孔欠发育,认为两者孔隙类型的差异与有机质含量高低密切相关。

关键词: 页岩储层, 孔隙结构, 孔隙类型, 筇竹寺组, 下寒武统, 上扬子地区

Abstract:

In order to reveal the microscopic pore characteristics and reservoir performance of high thermal evolution shale reservoir,according tothe tests of whole rock X-ray diffraction,organic carbon,helium porosity,nitrogen adsorption at low temperature,joint tests of high pressure mercury and adsorption,argon ion polishing,scanning electron microscopy and other tests,micro pore structure,type and their characteristics of high thermal evolution shale in the Lower Cambrian are studied.The results show that the specific surface area of shale is from 0.46m2/g to 34.70m2/g with an  average of 12.36m2/g,the total pore volumepergram shale is from 0.43×10-3cm3/g to 11.29×10-3cm3/g with an average of 4.65×10-3cm3/g,and the pore diameteris mainly small(2-10nm)and followed by medium(10-50nm).The relationship among total pore volumepergram,TOC and specific surface area is positive and linear.Shale developed 7 types of pores,i.e.,organic pore,intergranular pore,intragranular pore,clay interlayer pore,pyrite intergranular pore,structural micro fracture and diagenetic micro fracture.Micro cracks generally developed in all study area,organic pore,intergranular pore and clay interlayer pore mainly developed in Sichuan Basin,the pore outside Sichuan Basin mainly is organic pore,whose shape is irregular and narrow.Inorganic mineral poresundeveloped outside Sichuan Basin.It is believed that the difference of the pore type is closely related to the content of organic matter.

Key words: Shale reservoir, Pore structure, Pore type, Qiongzhusi Fomation, Lower Cambrian series, Upper Yangtze area

中图分类号: 

  • TE122.2

[1]He Zhiliang,Hu Zongquan,Nie Haikuan,et al.Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J].Natural Gas Geoscience,2017,28(5):724-733.[何治亮,胡宗全,聂海宽,等.四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J].天然气地球科学,2017,28(5):724-733.]
[2]Liu Wenping,Zhang Chenglin,Gao Guidong,et al.Controlling factors and evolution laws of shale porosity in Longmaxi Formation,Sichuan Basin[J].Acte Petrolei Sinica,2017,38(2):175-184.[刘文平,张成林,高贵冬,等.四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J].石油学报,2017,38(2):175-184.
[3]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.[杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.]
[4]Yu Bingsong.Particularity of shale gas reservoir and its evaluation[J].Earth Science Frontiers,2012,19(3):252-258.[于炳松.页岩气储层的特殊性及其评价思路和内容[J].地学前缘,2012,19(3):252-258.]
[5]Cui Jingwei,Zou Caineng,Zhu Rukai,et al.New advances in shale porosity research[J].Advances in Earth Science,2012,27(12):1319-1325.[崔景伟,邹才能,朱如凯,等.页岩孔隙研究新进展[J].地球科学进展,2012,27(12):1319-1325.]
[6]Guo Xusheng,Hu Dongfeng,Li Yuping,et al.Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J].Petroleum Exploration and Development,2017,44(4):1-11.[郭旭升,胡东风,李宇平,等.涪陵页岩气田富集高产主控地质因素[J].石油勘探与开发,2017,44(4):1-11.]
[7]Hu Zongquan,Du Wei,Peng Yongmin,et al.Microscopic pore characteristics and the source-reservoir relationship of shale:An example from the Wufeng Formation and Longmaxi Formation in southeast Sichuan Basin[J].Oil & Gas Geology,2015,36(6):1001-1008.[胡宗全,杜伟,彭勇民,等.页岩微观孔隙特征及源—储关系——以川东南地区五峰组—龙马溪组为例[J].石油与天然气地质,2015,36(6):1001-1008.]
[8]Liu Zhongbao,Gao Bo,Zhang Yuying,et al.Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area,south China[J].Petroleum Exploration and Development,2017,44(1):21-31.[刘忠宝,高波,张钰莹,等.上扬子地区下寒武统页岩沉积相类型及分布特征[J].石油勘探与开发,2017,44(1):21-31.]
[9]Xiao Xianming,Wang Maolin,Wei Qiang,et al.Evaluation of Lower Paleozoic shale with shale gas prospect in south China[J].Natural Gas Geoscience,2015,26(8):1433-1445.[肖贤明,王茂林,魏强,等.中国南方下古生界页岩气远景区评价[J].天然气地球科学,2015,26(8):1433-1445.]
[10]Leng Jigao,Gong Dajian,Li Fei,et al.Analyses on the shale gas exploration prospect of the Niutitang Formation in northeastern Guizhou area[J].Earth Science Frontiers,2016,23(2):29-38.[冷济高,龚大建,李飞,等.黔东北地区牛蹄塘组页岩气勘探前景分析[J].地学前缘,2016,23(2):29-38.]
[11]Wang Shufang,Zhang Ziya,Dong Dazhong,et al.Microscopic pore structure and reasons making reservoir property weaker of Lower Cambrian Qiongzhusi shale,Sichuan Basin,China[J].Natural Gas Geoscience,2016,27(9):1619-1628.[王淑芳,张子亚,董大忠,等.四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J].天然气地球科学,2016,27(9):1619-1628.]
[12]Wang Yu,Jin Chan,Wang Lihua,et al.Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion Milling[J].Rock and Mineral Analysis,2015,34(3):278-285.[王羽,金婵,汪丽华,等.应用氩离子抛光—扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J].岩矿测试,2015,34(3):278-285.]
[13]Sun Mengdi,Yu Bingsong,Chen Song,et al.The reservoir characteristics and adsorption capacity of the Lower Cambrian Niutitang Formation shale in southeast of Chongqing:A case study of Well Yuke1 and Well Youke1[J].Journal of Northeast Petroleum University,2015,39(1):69-79.[孙梦迪,于炳松,陈颂,等.渝东南地区下寒武统牛蹄塘组页岩储层特征及甲烷吸附能力——以渝科1井和酉科1井为例[J].东北石油大学学报,2015,39(1):69-79.]
[14]Cao Xiaomeng,Yu Bingsong,Li Xintong,et al.Reservoir characteristics and evaluation on logging of the Lower Cambrian gas shale in southeast Chongqing:A case study of Well Yuke 1 and Well Youke 1[J].Acta Petrolei Sinica,2014,35(2):233-244.[曹晓萌,于炳松,李心童,等.渝东南下寒武统页岩储层特征及测井评价——以渝科1井和酉科1井为例[J].石油学报,2014,35(2):233-244.]
[15]Ma Wengxin,Liu Shugen,Huang Wenming,et al.Mud shale reservoirs characteristics of Qiongzhusi Formation on the margin of Sichuan Basin,China[J].Journal of Chengdu University of technology:Science & Technology Edition,2012,39(2):182-189.[马文辛,刘树根,黄文明,等.四川盆地周缘筇竹寺组泥页岩储层特征[J].成都理工大学学报:自然科学版,2012,39(2):182-189.]
[16]Nie Haikuan,Bian Ruikang,Zhang Peixian,et al.Study of shale reservoir micro types & characteristics and its effects on the gas content of the Lower Paleozoic in Southeast Sichuan Basin[J].Earth Sarth Science Frontiers,2014,21(4):331-343.[聂海宽,边瑞康,张培先,等.川东南地区下古生界页岩储层微观类型与特征及其对含气量的影响[J].地学前缘,2014,21(4):331-343.]
[17]Yu Bingsong.Classification and characterization of gas shale pore system[J].Earth Science Frontiers,2013,20(4):211-220.[于炳松.页岩气储层孔隙分类与表征[J].地学前缘,2013,20(4):211-220.]
[18]Zhang Hui,Jiang Shujing,Pang Qifa,et al.SEM observation of organic matter in the Eopaleozoic shale in south China[J].Oil & Gas Geology,2015,36(4):675-680.[张慧,焦淑静,庞起发,等.中国南方早古生代页岩有机质的扫描电镜研究[J].石油与天然气地质,2015,36(4):675-680.]
[19]Li  Xianqing,Wang Yuan,Guo Man,et al.Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the south of Sichuan Basin[J].Natural Gas Geoscience,2015,26(8):1464-1471.[李贤庆,王元,郭曼,等.川南地区下古生界页岩气储层孔隙特征研究[J].天然气地球科学,2015,26(8):1464-1471.]
[20]Guo Xusheng,Hu Dongfeng,Wen Zhidong,et al.Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery:A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J].Geology in China,2014,41(3):893-901.
[郭旭升,胡东风,文治东,等.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组—龙马溪组为例[J].中国地质,2014,41(3):893-901.]

[1] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[3] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[4] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[5] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[6] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[7] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[8] 杨智峰,曾溅辉,韩菲,冯枭,冯森,张译丹,乔俊程. 鄂尔多斯盆地西南部长6—长8段致密砂岩储层微观孔隙特征[J]. 天然气地球科学, 2017, 28(6): 909-919.
[9] 顾志翔,何幼斌,彭勇民,饶松,杜伟,张灿. 川南_黔中地区下寒武统页岩气富集条件探讨[J]. 天然气地球科学, 2017, 28(4): 642-653.
[10] 黄玉龙,刘春生,张晶晶,高有峰. 松辽盆地白垩系火山岩气藏有效储层特征及成因[J]. 天然气地球科学, 2017, 28(3): 420-428.
[11] 焦伟伟,汪生秀,程礼军,罗情勇,方光建. 渝东南地区下寒武统页岩气高氮低烃成因[J]. 天然气地球科学, 2017, 28(12): 1882-1890.
[12] 马明,陈国俊,李超,张功成,晏英凯,赵钊,沈怀磊. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征[J]. 天然气地球科学, 2017, 28(10): 1515-1526.
[13] 李凤丽,姜波,宋昱,汤政. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学, 2017, 28(1): 173-182.
[14] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[15] 王淑芳,张子亚,董大忠,王玉满,李新景,胡俊文,黄金亮,管全中. 四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J]. 天然气地球科学, 2016, 27(9): 1619-1628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!