天然气地球科学

• 天然气开发 • 上一篇    下一篇

基于物质平衡的页岩气井压裂改造裂缝体积与面积计算

杨斌1,游利军1,康毅力1,何志君1,2,李相臣1   

  1. 1.西南石油大学“油气藏地质及开发工程”国家重点实验室,四川 成都 610500;
    2.中国石化西南油气分公司川西采气厂,四川 德阳 618000
  • 收稿日期:2017-04-05 修回日期:2017-06-15 出版日期:2017-07-10 发布日期:2017-07-10
  • 作者简介:杨斌(1989-),男,四川南充人,博士研究生,主要从事储层保护理论与技术、页岩气开发地质研究. E-mail:cwct2012yb@sina.com.
  • 基金资助:

    “十三五”国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(编号:2016ZX05061);国家自然科学基金(编号:51674209);非常规油气层保护四川省青年科技创新团队项目(编号:2016TD0016)联合资助.

Estimation of fracture volume and its surface area on stimulated shale gas wells by material balance method

Yang Bin1,You Li-jun1,Kang Yi-li1,He Zhi-jun1,2,Li Xiang-chen1   

  1. 1.State Key Laboratory of Oil &Gas Reservoir Geology and Exploitationin Southwest Petroleum University,Chengdu 610500,China;
    2.West Sichuan Gas Production Plant,SINOPEC Southwest Oil & Gas Company,Deyang 618000,China
  • Received:2017-04-05 Revised:2017-06-15 Online:2017-07-10 Published:2017-07-10

摘要:

页岩气井的压后排采过程呈现明显的阶段性特征,根据生产气液比与累积产气量的关系曲线可将整个排采阶段划分为早期阶段和晚期阶段。在排采生产早期,气井表现为气液同产,并以产液为主,此时页岩基质向裂缝系统的供气能力不足,整个水力裂缝系统(主压裂缝、次级压裂缝及沟通天然裂缝)可视为封闭体系。从物质平衡原理出发,建立了基于排采早期阶段生产数据的压裂裂缝初始体积和面积的计算模型,并以龙马溪组典型页岩气井进行了实例分析。结果显示,分析井的裂缝体积为注入压裂液量的70%左右,裂缝面积可达107m2量级,较大的改造裂缝面积也说明压裂形成了较复杂的缝网,提高了气井有效泄流面积。该模型解释结果与页岩气井排采参数和产气能力吻合良好,是评价压裂裂缝参数和改造效果的有效途径,对矿场水力压裂效果评估具有指导意义。

关键词: 页岩气, 排采阶段, 物质平衡, 裂缝体积, 裂缝面积

Abstract:

The flowback data of stimulated shale gas wellusually show different features along with well production process,and consequently the data may be divided into two stages: the early gas production stage (EGP) and late gas production stage (LGP) according to the changes ofgas water ratio(GWR).The early stage indicates a two-phase flow,and the water phase is the dominant because the gas supply of shale matrix to the fracture network is still insufficient.Also,in this stage,the whole fracture network (including primary fractures,secondary fractures and connected natural fractures) can be regarded as a closed system.This paper established a material balance model to estimate the stimulated fracture volume and surface area via the early stage flowback data,and the validity of this model was verified through two field cases of Longmaxi Formation shale gas wells.The results showed that fracture volume of the analyzed wells was about 70% of the total injected fluid volume,and the fracture surface area reached 107m2.Huge fracture surface area indicatedthat complex fracture network had beenformed during fracturing,which couldsignificantly increase the drainage area of the stimulated wells.The analyticalresults of this model agreed well with the flowback data and well production characteristics.It further demonstratesthat this approach is an effective method to evaluate the fracture parameters of stimulated wells,and is of significance to field evaluation of fractured shale gas wells.

Key words: Shale gas, Flowback stages, Material balance, Fracture volume, Fracture surface area

中图分类号: 

  • TE122.1

[1]Wang Yuman,Dong Dazhong,Li Xinjing,et al.Stratigraphic sequence and sedimentary characteristics of Low Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas[J].Natural Gas Industry,2015,35(3):12-21.[王玉满,董大忠,李新景,等.四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J].天然气工业,2015,35(3):12-21.]
[2]Chen Qiang,Kang Yili,You Lijun,et al.Micro-structure of gas shales and its effect on gas mass transfer[J].Natural Gas Geoscience,2013,24(6):1299-1306.[陈强,康毅力,游利军,等.页岩微孔结构及其对气体传质方式影响[J].天然气地球科学,2013,24(6):1299-1306.]
[3]Zou Caineng,Dong Dazhong,Wang Yuman,et al.Shale gas in China:characteristics,challenges and prospects (Ⅱ)[J].Petroleum Exploration and Development,2016,43(2):166-178.[邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(二)[J].石油勘探与开发,2016,43(2):166-178.]
[4]Fu Haifeng,Liu Yunzhi,Liang Tiancheng,et al.Laboratory study on hydraulic fracture geometry of Longmaxi Formation shale in Yibin area of Sichuan Province[J].Natural Gas Geoscience,2016,27(2):2231-2236.[付海峰,刘云志,梁天成,等.四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J].天然气地球科学,2016,27(2):2231-2236.]
[5]Warpinski N.Microseismic monitoring:Inside and out[J].Journal of PetroleumTechnology,2009,61(11):80-85.
[6]Makhanov K,Habibi A,Dehghanpour H,et al.Liquid uptake of gas shales:A workflow to estimate water loss during shut-in periods after fracturing operations[J].Journal of Unconventional Oil and Gas Resources,2014,7:22-32.
[7]Ghanbari E,Dehghanpour H.Impact of rock fabric on water imbibition and salt diffusion in gas shales[J].International Journal of Coal Geology,2015,138:55-67.
[8]Ghanbari E,Dehghanpour H.The fate of fracturing water:A field and simulation study[J].Fuel,2016,163:282-294.
[9]Wu Tianpeng.The Effective Fracture Volume Evaluation of Shale Gas Wells Based on Flowback Data[C].Yinchuan:National Natural Gas Annual Conference of China,2016.[吴天鹏.基于返排数据的页岩气井压后裂缝体积评价[C].银川:全国天然气学术年会,2016.]
[10]Liu Naizhen,Liu Ming,Zhang Shicheng.Flowback patterns of fractured shale gas wells[J].Natural Gas Industry,2015,35(3):50-54.[刘乃震,柳明,张士诚.页岩气井压后返排规律[J].天然气工业,2015,35(3):50-54.]
[11]Abbasi M A,Ezulike D O,Dehghanpour H,et al.A comparativestudy of flowback rate and pressure transient behavior in multifractured horizontalwells completed in tight gas and oil reservoirs[J].Journal of Natural Gas Science & Engineering,2014,17:82-93.
[12]Ilk D,Currie S M,Symmons D,et al.A Comprehensive Workflow for Early Analysis and Interpretation of Flowback Data from Wells in Tight Gas/Shale Reservoir Systems[C].Florence,Italy:SPE Annual Technical Conference and Exhibition,2010.
[13]Adefidipe O,Dehghanpour H,Virues C.Immediate Gas Production from Shale Gas Wells:A Two-phase Flowback Model[C].Woodlands,USA:SPE Unconventional Resources Conferences,2014.
[14]Xu Y,Adefidipe O,Dehghanpour H.Estimating fracture volume using flowback data from the Horn River Basin:A material balance approach[J].Journal of Natural Gas Science & Engineering,2015,25:253-270.
[15]Xu Y,Adefidipe O,Dehghanpour H.A flowing material balance equation for two-phase flowback analysis[J].Journal of Petroleum Science and Engineering,2016,142:170-185.
[16]Lavor A,Tronvoll J.Mechanics of Borehole Ballooning in Naturally-fractured Formations[C].Kingdom,Bahrain:SPE Middle East Oil and Gas Show and Conference,2005.
[17]Majidi R,Miska S Z,Yu M,et al.Fracture Ballooning in Naturally Fractured Formations:Mechanism and Controlling Factors[C].Denver,USA:SPE Annual Technical Conference and Exhibition,2008.
[18]Li Daqi.Numerical and Experimental Investigations of Drilling Fluid Losses in Fractured Formations[D].Chengdu:Southwest Petroleum University,2012.[李大齐.裂缝性地层钻井液漏失动力学研究[D].成都:西南石油大学,2012.]

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[4] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[5] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[6] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[7] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[8] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[9] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[10] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[11] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[12] 王怒涛,陈仲良,祝明谦,王玉根,张琰. 基于质量守恒原理的凝析气藏单井动态储量计算[J]. 天然气地球科学, 2018, 29(3): 424-428.
[13] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[14] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
[15] 梁榜,李继庆,郑爱维,卢文涛,张谦. 涪陵页岩气田水平井开发效果评价[J]. 天然气地球科学, 2018, 29(2): 289-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!