天然气地球科学 doi: 10.11764/j.issn.1672-1926.2017.06.007

• 非常规天然气 • 上一篇    下一篇

煤结构演化与生气过程关系研究

陈金明1,2,3,李贤庆1,2,祁帅1,2,高文杰1,2,孙可欣1,2   

  1. 1.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京 100083;
    2.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;
    3.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2017-03-06 修回日期:2017-05-16 出版日期:2017-06-10 发布日期:2017-06-10
  • 通讯作者: 李贤庆(1967-),男,浙江富阳人,教授,博士生导师,主要从事煤油气地质,有机地球化学,有机岩石学研究及教学工作. E-mail:lixq@cumtb.edu.cn.
  • 作者简介:陈金明(1991-),男,安徽安庆人,硕士研究生,主要从事油气地质研究. E-mail:jmc0808@163.com.
  • 基金资助:

    国家自然科学基金项目(编号:41673047;41572125);国家科技重大专项(编号:2016ZX05007-003)联合资助.

Study on the relationship between chemical structure evolution and gas generation of coal

Chen Jin-ming1,2,3,Li Xian-qing1,2,Qi Shuai1,2,Gao Wen-jie1,2,Sun Ke-xin1,2   

  1. 1.State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),Beijing
    100083,China;2.College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),
    Beijing
    100083,China;3.Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China
  • Received:2017-03-06 Revised:2017-05-16 Online:2017-06-10 Published:2017-06-10

摘要:

利用傅里叶红外光谱分析技术对煤化程度(RO)范围为0.35%~5.32%的19个煤样进行了结构分析。分析结果表明:随着RO值的增加,煤结构中不同的官能团具有不同的演化规律。芳环结构中C-H键在红外谱图中先增加,当RO>3.0%后逐渐减小。含氧侧链与脂肪族侧链随着RO值增加,吸收峰强度总体呈减弱的趋势。含氧官能团的含量在逐渐的减少,RO>2.5%时,煤结构中基本不再含有含氧侧链;脂肪族侧链RO<2.0%时,脂肪侧链随着煤化程度的增加快速减少,RO>2.0%时脂肪族侧链在煤结构中缓慢减少,当RO>2.5%时,在煤结构中检测到的脂肪侧链已经很少。煤结构的上述演化规律预示着煤在不同的演化阶段具有不同的生气特征。RO<0.8%含氧侧链在煤结构的快速减少说明CO2气的生成主要发生在相对低的演化阶段;脂肪侧链两段式的演化规律说明煤的主要生气(烃类气体)阶段发生在RO<2.0%,而煤生气结束的煤化程度界限为RO>5.0%。煤在石墨化过程中从芳环上脱落的氢与煤在演化阶段生成的CO2之间发生的费_托反应可能是过成熟阶段煤成气碳同位素倒转(反转)的一个重要因素。

关键词: 煤化学结构, 傅里叶红外技术, 生气机理, 生气结束界限

Abstract:

The chemical structure of 19 samples with maturities ranging from  0.35% to  5.32% RO was measured by Fourier transform infrared spectroscopy(FTIR).The results show that with the increase of RO,different functional groups in coal structure have different evolution rules.The C-H bond on the aromatic ring structure increases first,when RO>2.5%,decreases in the infrared spectrum. With the increase of RO,the overall trend of absorption peaks intensity of the oxygen side chain and aliphatic side chain weakened.The content of oxygen-containing functional groups decreased gradually.When RO>2.5%,the coal structure basically no longer contains oxygen side chain;When RO<2.0%,the aliphatic side chain increased rapidly with increasing coalification;when RO>2.0%,the aliphatic side chain in the coal structure slowly reduced;when RO>2.5%,nearly no fat side chain was detected in the  coal structure.This demonstrates that coal has different gas generation features at different stages.The rapid reduction of coal content in the oxygen-containing side chain indicates that the formation of CO2 gas mainly occurs in the relatively low evolution stage.The two-stage evolution aliphatic groups indicated that the main gas generation period of coal was at the stage with thermal maturity <2.0%RO,however,the upper limit of thermal maturity for gas generation from coal was >5.0%RO.The Fischer-Tropsch reaction,which happened between hydrogen atom cleaved from aromatic rings at graphitization(RO>3.0%) and CO2 gengerated by oxygen-containing groups cleavage from coal at RO<2.0%,should be one of the important reasons causing carbon isotopic reversal of coal derived gases at over maturity.

Key words: Coal chemical structure, Fourier transform infrared spectroscopy(FTIR), Mechanism of gas generation, Upper thermal maturity limit

中图分类号: 

  • TE132.2

[1]Dai Jinxing,Pei Xigu,Qi Houfa.Natural Gas Geology:Vol.1[M].Beijing:Petroleum Industry Press,1987:1-10.[戴金星,裴锡古,戚厚发.中国天然气地质学:卷一[M].北京:石油工业出版社,1987:1-10.]
[2]Han Dexin.Coal Petrology of China[M].Xuzhou:China University of Mining and Technology Press,1996:198-231,356-382.[韩德馨.中国煤岩学[M].徐州:中国矿业大学出版社,1996:198-231,356-382.]
[3]Wu Wei.Sichuan Basin in the Silurian Longmaxi Shale Gas Geochemical Characteristics and Genesis[D].Beijng:Research Institute of Petroleum Exploration and Development Chinese,2015.[吴伟.四川盆地志留系龙马溪组页岩气地球化学特征与成因[D].北京:中国石油勘探开发研究院,2015.]
[4]Xie Kechang.Coal Structure and Its Reactivity[M].Beijing:Science Press,2002.[谢克昌.2002.煤的结构与反应性[M].北京:科学出版社,2002.]
[5]Botto R E,Grant D M,Harris R K.Encyclopedia of Nuclear Magnetic Resonance[M].New York:John Wiley & Sons,1996:576-583.
[6]Cao X Y,Chappell M A,Schimmelmann A,et al.Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state 13C NMR spectroscopy[J].International Journal of Coal Geology,2013,108(2):53-64.
[7]Cramer B,Eckhard F,Gerling P,et al.Reaction kinetics of stable carbon  isotopes in natural gases insights from dry,open system pyrolysis experiments[J].Energy & Fuels,2001,15(3):517-532.
[8]Erdmann M,Horsfield B.Enhanced late gas generation potential of petroleum source rocks via recombination reactions:Evidence from the Norwegian North Sea[J].Geochimica et Cosmochimica Acta,2006,70(15):3943-3956.
[9]Fuller E L,Smyrl N R,Howell R L,et al.Chemistry and structure of coals:Evaluation of organic structure by computer aided diffuse reflectanceinfrared spectroscopy[J].American Chemical Society Division of Fuel Chemostry,1984,29(1):1-9.
[10]Iglesias M J,Jiménez A,Laggoun-Défarge F,et al.FTIR study of pure vitrains and associated coals[J].Energy & Fuels,1995,9(3):458-466.
[11]Killops S D,Killops V J.Introduction to Organic Geochemistry[M].Second Edition.America:Blackwell Science Ltd.,2005:198-358.
[12] Dai J X.Major developments of coal-formed gas exploration in the last 30 years in China[J].Petroleum Exploration and Development,2009,36(3):264-279.
[13] Dieckmann V,Ondrak R,Cramer B,et al.Deep basin gas:New insights from kinetic modelling andisotopic fractionation in deep-formed gas precursors[J].Marine and Petroleum Geology,2006,23(2):183-199.
[14]Durand B,Paratte M.Oil potential of coals:A geochemical approach[M][JP3]//Brooks J.Petroleum Geochemistry and Exploration of Europe Geological Society Special Publication,1983,5(1):255-265.
[15]Mi J K,Zhang S C,Hu G Y,He K.Geochemistry of coal-measure source rocks and natural gases in deep formations in Songliao Basin,NE China[J].International Journal of Coal Geology,2010,84(4):276-285.
[16]Lin R,Ritz P.Studying individual macerals using IR microspectroscopy,and implication on oil versus gas/condense proneness and ‘low-rank’ generation[J].Organic Geochemistry,1993,20(6):695-706.
[17]Mahlstedt N,Horsfield B,Dieckmann V.Second order reactions as a prelude to gas generation at high maturity[J].Organic Geochemistry,2008,39(8):1125-1129.
[18]Mahlstedt N,Horsfield B.Metagenetic methane generation in gas shales I.Screening protocols using immature samples[J].Marine and Petroleum Geology,2003,31(1):27-42.
[19]Machnikowska H,Pawelec K,Podgórska K.Microbial degradation of low rank coals[J].Fuel Process Technol,2012,77-78(2):17-23.
[20]Mao J D,Cory R M,McKnight D M,et al.Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR[J].Organic Geochemistry,2007,38(8):1277-1292.
[21]Mao J D.Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state 13C NMR spectroscopy[J].International Journal of Coal Geology,2013,108(6):53-64.
[22]Peng P A,Zou Y R,Fu J M.Progress in generation kinetics studies of coal-derived gases[J].Petroleum Exploration and Development,2009,36(3):297-306.
[23]Schmidt-Rohr K,Davies G,Ghabbour E A,et al.Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance[J].Soil Science Society of America Journal,2000,64(3):873-884.
[24]Shuai Y H,Zhang S C,Mi J K,et al.Charging time of tight gas in the Upper Paleozoic of the Ordos Basin,central China[J].Organic Geochemistry,2013:38-46.
[25]Snape C E,Axelson D E,Botto R E,et al.Quantitative reliability of aromaticity and related measurements on coals by 13C NMR.A debate[J].Fuel,1989,68(5):547-560.
[26]Suggatea R P,Dickinson W W.Carbon NMR of coals:The effects of coal type and rank[J].International Journal of Coal Geology,2004,57(1):1-22.
[27]Tissot B P,Welte D H.Petroleum formation and occurrences[J].Berlin:Springer Verlag,1984:699-712.
[28]Vanderhart  D L,Retcofsky H L.Estimation of coal aromaticities by proton-decoupled carbon-13 magnetic resonance spectra of whole coals[J].Fuel,1976,55(3):202-204.
[29]Vu T T,Horsfield B,Mahlstedt N,et al.The structural evolution of organic matter during maturation of coals and its impact on petroleum potential and feedstock for the deep biosphere[J].Organic Geochemistry,2013,62(5):17-27.
[30]Yao S P,Zhang K,Jiao K,et al.Evolution of coal structures:FTIR analyses of experimental simulations and naturally matured coals in the Ordos Basin,China[J].Energy Exploration & Exploitation,2011,29(1):1-19.
[31]Yu C L,Fana L T,Shahram S,et al.Generation of light hydrocarbons through Fischer-Tropsch synthesis:Identification of potentially dominant catalytic pathways via the graph-theoretic method and energetic analysis[J].Computers and Chemical Engineering,2009,33(6):1182-1186.
[32]Zhang S C,Mi J K,He K.Synthesis of hydrocarbon gases from four different carbon sources and hydrogen gas using a gold-tube system by Fischer-Tropsch method[J].Chemical Geology,2013,349-350(4):27-35.
[33]Fu Q,Lollar B S,Horita J,et al.A biotic formation of hydrocarbons under hydrothermal conditions:Constraints from chemical and isotopic data[J].Geochimic Cosmochim Acta,2007,71(8):1982-1998.
[34]Hu G X,Ouyang Z Y.Carbon isotopic fraction at ion in the process of Fischer -Tropsch reaction in primitive solar nebula[J].Science in China:Series D,1998,41(2):202-207.
[35]Taran Y A,George A K,Vyacheslav S S.Carbon isotope effects in the open-system Fischer-Tropsch synthesis[J].Geochimica et Cosmochimica Acta,2007,71(18):4474-4487.
[36]Cheng Fuqi,Jin Qiang.Study on natural gas composition and isotopic fractionation effect after accumulation[J].Natural Gas Geoscience,2005,16(4):522 -525.[程付启,金强.成藏后天然气组分与同位素分馏效应研究[J].天然气地球科学,2005,16(4):522 -525.]
[37]Yang Chun,Wang Jinghong,Mei Jingkui,et al.Mechanism of carbon isotope fractionation of alkane gas in Fischer-Tropsch synthesis experiment[J].Natural Gas Geoscience,2011,22(2):206-210.[杨春,王京红,米敬奎,等.费—托合成实验中烷烃气碳同位素分馏机理[J].天然气地球科学,2011,22(2):206-210.]
[38]Wu Wei,Luo Chao,Zhang Jian,et al.Evolution law and genesis of ethane carbon isotope of oil type gas[J].Acta Petrolei Sinica,2016,37(12):1463-1471.[吴伟,罗超,张鉴,等.油型气乙烷碳同位素演化规律与成因[J].石油学报,2016,37(12):1463-1471.]
[39]Wu Wei,Fang Chenchen,Dong Dazhong,et al.Shale gas geochemical anomalies and gas source identification[J].Acta Petrolei Sinica,2015,36(11):1332-1440.[吴伟,房忱琛,董大忠,等.页岩气地球化学异常与气源识别[J].石油学报,2015,36(11):1332-1440.]
[40]Ni Yanyan,Jin Yongbin.Carbon isotopic distribution in Fischer-Tropsch synthesis[J].Energy Exploration & Exploitation,2011,38(2):249-256.[倪云燕,靳永斌.费托合成反应中的碳同位素分布[J].石油勘探与开发,2011,38(2):249-256.]
[41]Gao Haifeng,Xiao Xianming.Shale carrier carbon isotope inversion:Mechanism and application[J].Journal of China Coal Society,2013,38(5):827-833.[盖海峰,肖贤明.页岩气碳同位素倒转——机理与应用[J].煤炭学报,2013,38(5):827-833.]

[1] 郭广山, 邢力仁, 李娜, 陈峥嵘. 煤层气井组生产特征及产能差异控制因素[J]. 天然气地球科学, 2020, 31(9): 1334-1342.
[2] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[3] 刘超威, 郭旭光, 王泽胜, 朱伶俐, 张蓉, 陈洪. 准噶尔盆地阜康凹陷东斜坡侏罗系头屯河组油气成藏期次[J]. 天然气地球科学, 2020, 31(7): 962-969.
[4] 戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
[5] 舒志恒, 方栋梁, 郑爱维, 刘超, 刘莉, 吉婧, 梁榜. 四川盆地焦石坝地区龙马溪组一段上部页岩气层地质特征及开发潜力[J]. 天然气地球科学, 2020, 31(3): 393-401.
[6] 王倩茹, 陶士振, 关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学, 2020, 31(3): 417-427.
[7] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[8] 刘艳军, 李霖川. 沉积物粒度及组分与天然气水合物合成速率关系实验[J]. 天然气地球科学, 2020, 31(2): 176-183.
[9] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[10] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[11] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[12] 刘虎, 曹涛涛, 戚明辉, 王东强, 邓模, 曹清古, 程斌, 廖泽文. 四川盆地东部华蓥山地区龙潭组页岩气储层特征[J]. 天然气地球科学, 2019, 30(1): 11-26.
[13] 许耀波, 朱玉双, 张培河. 沁水盆地赵庄井田煤层气产出特征及其影响因素[J]. 天然气地球科学, 2019, 30(1): 119-125.
[14] 张洲, 鲜保安, 连小华, 王青川, 周敏. 低渗煤储层背景下高渗带主控地质因素及模式[J]. 天然气地球科学, 2018, 29(11): 1656-1663.
[15] 陈玉凤, 周雪冰, 梁德青, 吴能友. 沉积物中天然气水合物生成与分解过程的电阻率变化[J]. 天然气地球科学, 2018, 29(11): 1672-1678.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[8] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[9] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .
[10] 荣宁,吴迪,韩易龙,陈文龙,王陶,张波,叶翔. 双台阶水平井在塔里木盆地超深超薄边际油藏开发中的应用及效果评价[J]. 天然气地球科学, 2006, 17(2): 230 -232 .