天然气地球科学

• 天然气地球化学 • 上一篇    

不同类型有机质热演化轻烃产率及组成特征对比

祁帅1,2,3,4,李贤庆1,2,何坤3,4,张光武5,陈金明1,2,3,4,高文杰1,2,梁万乐1,2   

  1. 1.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京 100083;
    2.中国矿业大学(北京)地球科学与测绘工程学院,北京100083;
    3.中国石油勘探开发研究院,北京100083;
    4.中国石油油气地球化学重点实验室,北京100083;
    5.中国石油勘探开发研究院廊坊分院天然气地质所,河北 廊坊 065007
  • 收稿日期:2017-04-12 修回日期:2017-05-18 出版日期:2017-06-10 发布日期:2017-06-10
  • 通讯作者: 李贤庆(1967-),男,浙江富阳人,教授,博士生导师,主要从事煤油气地质,有机地球化学,有机岩石学研究及教学工作. E-mail: lixq@cumtb.edu.cn.
  • 作者简介:祁帅(1992-),男,吉林通化人,硕士研究生,主要从事油气地球化学、油气地质方面研究. E-mail: 674236873@qq.com.
  • 基金资助:

    国家科技重大专项(编号:2016ZX05007-001;2016ZX05007-003);中国石油天然气股份有限公司重大科技专项(编号:2014E-3209);国家自然科学基金项目(编号:41572125)联合资助.

Comparativeresearch on the yields and chemical compositions of light hydrocarbonsderived from pyrolysis of organic matters with different types

Qi Shuai1,2,3,4,Li Xian-qing1,2,He Kun3,4,Zhang Guang-wu5,Chen Jin-ming1,2,3,4,Gao Wen-jie1,2,Liang Wan-le1,2   

  1. 1.State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),
    Beijing 100083,China;2.College of Geoscience and Surveying Engineering,China University of Mining and
    Technology(Beijing),Beijing 100083,China;3.Research Institute of Petroleum Exploration and Development,
    PetroChina,Beijing 100083,China;4.Key Laboratory of Petroleum Geochemistry,CNPC,Beijing 100083,China;
    5.Langfang Branch,Research Intitute of Petroleum Exploration & Development,PetroChina,Langfang 065007,China
  • Received:2017-04-12 Revised:2017-05-18 Online:2017-06-10 Published:2017-06-10

摘要:

结合黄金管热模拟实验及模拟产物的轻烃(C6-14)定量分析,对不同类型有机质热演化过程中轻烃产率及组成特征进行了对比研究。基于热解—色谱—质谱(PY-GC-MS)方法对模拟产物轻烃定量分析表明,具有较高氢指数(IH)的湖相Ⅰ型和海相Ⅱ1型有机质的轻烃产率明显高于海相Ⅱ2型有机质。松辽盆地白垩系湖相Ⅰ型有机质的最大轻烃产率为33.56mg/gTOC,张家口地区下马岭组海相Ⅱ1型有机质的最大轻烃产率为39.58mg/gTOC,四川盆地二叠系海相Ⅱ2型有机质的最大轻烃产率为10.08mg/gTOC。相对来说,轻烃产物中芳烃相对含量明显要高于饱和烃。同时,Ⅰ型有机质达到最大轻烃产率对应的热解温度或成熟度要明显低于Ⅱ型有机质。热解过程中不同碳数正构烷烃产率的演化结果表明,低碳数烷烃达到最大产率时的等效镜质体反射率(Easy% RO)值普遍高于高碳数烷烃,这归因于低碳数烷烃生成和裂解时的活化能更高。此外,通过热解过程中轻烃产物组成分析,认为萘含量、苯/正己烷与甲苯/正庚烷等参数与成熟度具有明显的相关性,可用于指示有机质热演化程度。

关键词: 不同类型有机质, 轻烃组成, 黄金管热解, 热解&mdash, 色谱&mdash, 质谱, 热演化

Abstract:

Based on gold-tube pyrolysis experiments and quantitative determination of light hydrocarbon(C6-14) products,the yields and composition characteristics of light hydrocarbons derived from different types of organic matters were studied in the paper.The quantification of light hydrocarbon products by PY-GC-MS,shows that C6-14 yieldsfrom lacustrine Type-Ⅰ and marine Type-Ⅱ1 organic matters with high IH areapparently higher than that from marine Type-Ⅱ2 organic matter.The maximum light hydrocarbon yields of Cretaceous lacustrine type I organic matter,Xiamaling type Ⅱ1 organic matter and Permian typeⅡ2 organic matter are 33.56,39.58 and 10.08mg/gTOC,respectively.Relatively,the content of aromatic hydrocarbons in light hydrocarbon products is obviously higher than that of saturated hydrocarbons.Meanwhile,the corresponding pyrolysis temperature or maturity reaching the maximum C6-14 yield for Type-Ⅰ kerogen is lower than that forType- Ⅱ kerogen.The evolution of the yields of normal alkanes(n-alkanes) with different carbon number during gold-tube pyrolysis,indicates that the equivalent vitrinite reflectance(Easy% RO) with the maximum yield forn-alkanes with lower carbon number is much higher than that with higher carbon number.This is attributed to the higher generation and cracking activation energy of lower carbon alkanes.By analysis of the light hydrocarbon compositions,we think that several parameters including the content of naphthalene,benzene/hexane and toluene/heptane are well relevant with maturity,and can be used to indicate the degree of thermal evolution of organic matters.

Key words: Different types of organic matters, Compositions of light hydrocarbons, Gold-tube pyrolysis, PY-GC-MS, Thermal evolution

中图分类号: 

  • TE122.1+13

[1]Burnaman M D,Shelton J.Shale gas play screening and evaluation criteria[J].China Petroleum Exploration,2009,14(3):51-64.
[2]Zhao Wenzhi,Wang Zhaoyun,Zhang Shuichang,et al.Successive generation of natural gas from organic materials and its significance in future exploration[J].Petroleum Exploration and Development,2005,32(2):1-7.[赵文智,王兆云,张水昌,等.有机质“接力成气”模式的提出及其在勘探中的意义[J].石油勘探与开发,2005,32(2):1-7.]
[3]Zhao Wenzhi,Wang Zhaoyun,Wang Hongjun,et al.Further discussion on the connotation andsignificanceof the natural gas relaying generation model from organic materials[J].Petroleum Exploration and Development,2011,38(2):129-135.[赵文智,王兆云,王红军,等.再论有机质“接力成气”的内涵与意义[J].石油勘探与开发,2011,38(2):129-135.]
[4]Wang Zhaoyun,Zhao Wenzhi,Zhang Shuichang,et al.Origin of deep marine gas and oil cracking gas potential of Paleozoic source rocks in Tarim Basin[J].Acta Sedimentologica Sinica,2009,27(1):153-161.[王兆云,赵文智,张水昌,等.深层海相天然气成因与塔里木盆地古生界油裂解气资源[J].沉积学报,2009,27(1):153-163.]
[5]Li Xianqing,Zhang Jizhen,Wang Yuan,et al.Accumulation conditions of Lower Paleozoic shale gas from the southern Sichuan Basin,China[J].Journal of Natural Gas Geoscience,2016,1(2):101-108.
[6]Mango F D.An invariance in the isoheptanes of petroleum[J].Science,1987,237(4814):514-517.
[7]Mango F D.The light hydrocarbons in petroleum:a critical review[J].Organic Geochemistry,1997,26(7/8):417-440.
[8]Thompson K F M.Light hydrocarbons in subsurface sediments[J].Geochimicaet Cosmochimica Acta,1979,43(5):657-672.
[9]Whelan J K,Hunt J M.Volatile C1-C8 organic compounds in sediments from the Peru upwelling region[J].Organic Geochemistry,1983,5(1):13-28.
[10]Li  Xianqing,Xiao Xianming,Tian Hui.The Generation Kinetics of Natural Gas and Its Application[M].Beijing:Geological Publishing House,2011:1-145.[李贤庆,肖贤明,田辉.天然气生成动力学及其应用[M].北京:地质出版社,2011:1-145.]
[11]Li  Xianqing,Yang Yunfeng,Feng Songbao,et al.Characteristics of hydrocarbon and gas generation process from pyrolyzed crude oils in Tarim Basin[J].Journal of China University of Mining & Technology,2012,41(3):397-405.[李贤庆,仰云峰,冯松宝,等.塔里木盆地原油裂解生烃特征与生气过程研究[J].中国矿业大学学报,2012,41(3):397-405.]
[12]Zhang Min,Huang Guanghui,Hu Guoyi,et al.Geochemistry study of oil-drived and kerogen maturation gases(Ⅰ):Simulation experiment and product analysis[J].Science in China:Series D,2008,38(supplement Ⅱ):12-19.[张敏,黄光辉,胡国艺,等.原油裂解气和干酪根裂解气的地球化学研究(Ⅰ)油裂模拟实验和产物分析[J].中国科学:地球科学,2008,38(增刊2):12-19.]
[13]Chen Xiaohui,Zhang Min,Huang Guanghui,et al.Geochemicalcharateristics of light hydrocarbons in cracking gases from chloroform bitumen A,crude oil and its fractions[J].Science in China:series D,2008,38(supplement Ⅱ):27-33.[陈小慧,张敏,黄光辉,等.氯仿沥青“A”、原油及其族组分裂解气轻烃地球化学特征[J].中国科学:地球科学,2008,38(增刊2):27-33.]
[14]Tang Xiaoqiang,Huang Guanghui,Zhang Min,et al.Compositon characteristics and geochemical significance of n-alkanes in the process of cracking of crude oil[J].Earth Science Frontiers,2009,16(6):372-378.[唐小强,黄光辉,张敏,等.原油裂解过程中正构烷烃的组成变化特征及其地球化学意义[J].地学前缘,2009,16(6):372-378.]
[15]Tang Xiaoqiang,Huang Guanghui,Zhang Min,et al.Composition characteristics of products in the process of cracking of crude oil and oil fractions[J].Journal of Chengdu University of Technology:Science& Technology Edition,2011,38(1):21-28.[唐小强,黄光辉,张敏,等.原油及其族组分裂解过程中产物组成变化特征[J].成都理工大学学报:自然科学版,2011,38(1):21-28.]
[16]Hu Guoyi,Xiao Zhongyao,Luo Xia,et al.Light hydrocarbon composition difference between two kinds of cracked gases and its application[J].Natural Gas Industry,2005,25(9):23-25.[胡国艺,肖中尧,罗霞,等.两种裂解气中轻烃组成差异性及其应用[J].天然气工业,2005,25(9):23-25.]
[17]Xiao Tingrong,Cai Bing,Meng Jianhua,et al.Contrastive study of two methods(“programmed temperature vaporization with back flushing” and “head space”)for light hydrocarbon analysis[J].Chinese Journal of Chromatography,2001,19(4):304-308.[肖廷荣,蔡冰,孟建华,等.两种轻烃分析方法(“PTV切割反吹”和“顶空”)的对比研究[J].色谱,2001,19(4):304-308.]
[18]Zhu Rifang,Zhang Linye,Li Juyuan,et al.Quantitative evaluation of residual liuid hydrocarbons in shale[J].Acta Petrolei Sinica,2015,36(1):13-18.[朱日房,张林晔,李钜源,等.页岩滞留液态烃的定量评价[J].石油学报,2015,36(1):13-18.]
[19]He Kun,Zhang Shuichang,Wang Xiaomei,et al.Hydrocarbon generation kinetics of type-Ⅰ organic matters in the Cretaceous lacustrine sequences,Songliao Basin[J].Oil & Gas Geology,2014,35(1):42-49.[何坤,张水昌,王晓梅,等.松辽盆地白垩系湖相Ⅰ型有机质生烃动力学[J].石油与天然气地质,2014,35(1):42-49.]
[20]He Kun,Zhang Shuichang,Mi Jingkui.Research on the kinetics and controlling factors for oil cracking[J].Natural Gas Geoscience,2011,22(2):1-8.[何坤,张水昌,米敬奎.原油裂解的动力学和控制因素研究[J].天然气地球科学,2011,22(2):1-8.]
[21]Hartgers W A,Damstéamst S,Leeuw J W D.Identification of C2-C4,alkylated benzenes in flash pyrolysates of kerogens,[JP3]coals and asphaltenes[J].Journal of Chromatography,1992,606(2):211-220.
[22]Hartgers W A,Damsté J S S,Leeuw J W D.Geochemical significance of alkylbenzene distributions in flash pyrolysates of kerogens,coals,andasphaltenes[J].Geochimicaet Cosmochimica Acta,1994,58(7):1759-1775.
[23]Hill R J,Lu S,Tang Y,et al.C4-benzene and C4-naphthalene thermal maturity indicators for pyrolysates,oils and condensates[J].Geochemical Society Special Publications,2004,9(4):303-319.
[24]Zhang S C,Huang H,Su J,et al.Geochemistry of alkylbenzenes in the Paleozoic oils from the Tarim Basin,NW China[J].Organic Geochemistry,2014,77:126-139.
[25]Behar F,Kressmann S,Rudkiewicz J L.Experimental simulation in a confined system and kinetic modeling of kerogen and oil crack-ing[J].Organic Geochemistry,1992,19(1-3):173-189.
[26]Behar F,Vandenbroucke M,Tang Y.Thermal cracking of in open and closed systems:determination of kinetic parameters and stoichiometric coefficients for oil and gas generation[J].Organic Geochemistry,1997,26(516):321-339.
[27]Dolci L S,Sciutto G,Guardigli M,et al.Experimental simulation of gas generation from coals and a marine kerogen[J].Chemical Geology,1995,126(3/4):247-260.
[28]Hu Guoyi,Wang Weisheng,Liao Fengrong.Geochemical characteristics and its influencing factors of light hydrocarbon in coal-derived gas:A case study of Sichuan Basin[J].Acta Petrologica Sinica,2012,28(3):905-916.[胡国艺,汪为胜,廖凤蓉.煤成气轻烃地球化学特征及其影响因素——以四川盆地须家河组为例[J].岩石学报,2012,28(3):905-916.]
[29]Kissin Y V.Catagenesis of light cycloalkanes in petroleum[J].Organic Geochemistry,1990,15(6):575-594.
[30]Mango F D.The origin of light cycloalkanes in petroleum[J].Geochimicaet Cosmochimica Acta,1990,54(1):23-27.
[31]Hill R J,TangY,Kaplan I R.Insights into oil cracking based on laboratory experiments[J].Organic Geochemistry,2003,34(12):1651-1672.
[32]Tissot B P,Durand B,Espitalie,et al.Influence of the nature and diagenesis of organic matter in formation of petroleum[J].AAPG Bulletin,1974,58(3):499-506.
[33]Hunt J M,Huc A Y,Whelan J K.Generation of light hydrocarbons in sedimentary rocks[J].Nature,1980,288(5792):688-690.
[34]Hu Guoyi,Li Jin,Li Zhisheng,et al.Composition and carbon isotopic distribution characteristics of light hydrocarbon in coal-derived gas and natural gas exploration[J].Acta Petrolei Sinica,2010,31(1):42-48.

[1] 陈晓艳,田福清,邹华耀,郭柳汐,芦晓伟,殷杰,王道军. 湖相烃源岩热演化生烃研究——基于冀中坳陷烃源岩加水热模拟实验[J]. 天然气地球科学, 2018, 29(1): 103-113.
[2] 郭敏,蔡进功,蒋启贵,丁飞. 烃源岩与<2μm黏粒级组分的热解—色谱特征对比及其意义[J]. 天然气地球科学, 2016, 27(4): 688-698.
[3] 熊小峰,徐新德,郭潇潇,梁刚,罗威. 沉积过程对莺歌海盆地烃源岩生气的控制作用[J]. 天然气地球科学, 2016, 27(12): 2169-2175.
[4] 刘会虎,胡宝林,徐宏杰,张文永,郑凯歌,程乔. 淮南潘谢矿区二叠系泥页岩构造热演化特征[J]. 天然气地球科学, 2015, 26(9): 1696-1704.
[5] 江强,朱传庆,邱楠生,曹环宇. 川南地区热史及下寒武统筇竹寺组页岩热演化特征[J]. 天然气地球科学, 2015, 26(8): 1563-1570.
[6] 仲佳爱,陈国俊,吕成福,杨巍,徐勇,杨爽,薛莲花. 陆相页岩热演化与甲烷吸附性实验研究[J]. 天然气地球科学, 2015, 26(7): 1414-1421.
[7] 吴伟,王雨涵,曹高社,黄雪峰,刘惟庆. 南华北盆地豫西地区C—P烃源岩地球化学特征[J]. 天然气地球科学, 2015, 26(1): 128-136.
[8] 卓勤功,赵孟军,李勇,鲁雪松,方世虎. 库车前陆盆地古近系岩盐对烃源岩生气高峰期的迟缓作用及其意义[J]. 天然气地球科学, 2014, 25(12): 1903-1912.
[9] 郑建京,高占冬,王亚东,郑有伟,刘兴旺,关宝文. 构造—热年代学在含油气盆地分析中的应用进展[J]. 天然气地球科学, 2014, 25(10): 1491-1498.
[10] 鲁雪松,宋岩,赵孟军,李勇,卓勤功,王媛. 库车前陆盆地复杂挤压剖面热演化历史模拟及烃源岩成熟度演化特征[J]. 天然气地球科学, 2014, 25(10): 1547-1557.
[11] 周立宏,于学敏,姜文亚,滑双君,邹磊落,于超. 歧口凹陷异常压力对古近系烃源岩热演化的抑制作用及其意义[J]. 天然气地球科学, 2013, 24(6): 1118-1124.
[12] 张明峰,邹红亮,冯备战,张小军,吴陈君,陈 茹,妥进才. 苯基取代多苯环化合物的成熟度指示意义——以柴达木盆地西部古近系—新近系烃源岩为例[J]. 天然气地球科学, 2013, 24(5): 975-981.
[13] 于永利,徐佑德,肖永军,余海洋,修安鹏,韩志宁. 松辽盆地长岭断陷东岭地区烃源岩热演化对油气成藏的控制作用[J]. 天然气地球科学, 2013, 24(4): 712-718.
[14] 龚德瑜,徐国盛,周东红,袁海锋,李建平,郭永华. 辽东湾海域天然气分布特点及其控制因素[J]. 天然气地球科学, 2013, 24(2): 388-397.
[15] 李颂,杨树春,仝志刚,郝建荣. 南海南部礼乐盆地深水区烃源岩生烃潜力研究[J]. 天然气地球科学, 2012, 23(6): 1070-1076.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!