天然气地球科学 doi: 10.11764/j.issn.1672-1926.2017.05.004

• 天然气地质学 • 上一篇    下一篇

利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例

张大智   

  1. 大庆油田有限责任公司勘探开发研究院,黑龙江 大庆 163712
  • 收稿日期:2017-01-14 修回日期:2017-04-26 出版日期:2017-06-10 发布日期:2017-06-10
  • 作者简介:张大智(1981-),男,河南洛阳人,高级工程师,博士,主要从事沉积储层、非常规地质研究. E-mail:zdz-007@163.com.
  • 基金资助:

    国家科技重大专项项目“致密气富集规律、资源潜力评价与有利目标优选”(编号:2016ZX05047-001);中国石油天然气股份有限公司重大科技专项项目“大庆油气持续有效发展关键技术研究与应用”(编号:2016E-02-03)联合资助.

Characterization of microscopic pore structure of tight sandstone reservoirs through nitrogen adsorption experiment: Case study of Shahezi Formation in Xujiaweizi Fault Depression,Songliao Basin,China

Zhang Da-zhi   

  1. Exploration and Development Research Institute of Daqing Oilfield Company Ltd.,Daqing 163712,China
  • Received:2017-01-14 Revised:2017-04-26 Online:2017-06-10 Published:2017-06-10

摘要:

微观孔隙结构研究对于徐家围子断陷沙河子组致密砂岩储层分类评价具有非常重要的意义,通过氮气吸附实验,针对其致密砂岩储层的微观孔隙结构开展研究,并分析了其影响因素。结果表明:沙河子组致密砂岩储层孔隙结构根据吸附回线形态可分为3类,第1类与 IUPAC的H2类相似,第2类与 IUPAC的H3类相似,第3类与 IUPAC的H4类相似。微孔(<10nm)与过渡孔(10~50nm)是比表面积和孔体积的主要贡献者,是沙河子组致密砂岩气聚集的主要空间。根据孔径分布形态,将沙河子组致密砂岩孔径划分为双峰型和三峰型2种类型,孔径主峰在30~60nm范围内,次峰在7~10nm和 100~110nm范围内。沙河子组微观孔隙主要有粒间孔、粒内孔、晶间孔等。沉积环境对孔隙结构的影响与不同沉积环境的岩性、岩石结构存在差异有关,矿物成分对储层微观孔隙结构有较大影响,其中比表面积、总孔孔体积与黏土含量呈正相关,与石英含量呈负相关,而平均孔径与黏土含量呈负相关,与石英含量呈正相关。

关键词: 氮气吸附, 致密砂岩储层, 微观孔隙结构, 徐家围子断陷, 沙河子组

Abstract:

The study of microscopic pore structure is of very important significance to the classified evaluation of tight sandstone reservoirs of Shahezi Formation in Xujiaweizi Fault Depression,Songliao Basin.By use of nitrogen adsorption experiment,microscopic pore structure of tight sandstone reservoirs was studied.A discussion about controlling factors of microscopic pore structure development was made.The results show that microscopic pore structure of tight sandstone reservoirs of Shahezi Formation can be subdivided into three types according to the conformation of nitrogen adsorption-desorption curves.The first type is similar to H2 of ICPAC,the second type is similar to H3 of ICPAC and the third type is similar to H4 of ICPAC.The micro-pore(<10nm)and the transition pore(10-50nm)provide the dominant specific surface and pore volume and are the major space of tight sandstone gas accumulation of Shahezi Formation.The pore diameter of tight sandstone of Shahezi Formation can be subdivided into the bimodal distribution types and the three peak distribution types.The main peak is in a range of 30-60nm and the secondary peak is in a range of 7-10nm and 100-110nm.There are various types of micropores in the Shahezi Formation,including intergranular pore,innergranular pore and intercrystal pore.The influence of sedimentary environment to the pore structure is related with the difference of lithology and rock texture of different sedimentary environment.Mineralogical composition has a big effect on microscopic pore structure.Specific surface and total pore volume show a positive correlation with the clay contents and a negative correlation with the quartz contents.However,average pore diameter shows a negative correlation with the clay contents and a positive correlation with the quartz contents.

Key words: Nitrogen adsorption, Tight sandstone reservoir, Microscopic pore structure, Xujiaweizi Fault Depression, Shahezi Formation

中图分类号: 

  • TE122.2+3

[1]Ran Xinquan,Wu Shenghe,Fu Jing,et al.Research on the pore structure classification of low permeability reservoir of the Yanchang Formation in Longdong area,Ordos Basin[J].Earth Science Frontiers,2013,20(2):77-85.[冉新权,吴胜和,付晶,等.鄂尔多斯盆地陇东地区延长组低渗透储层孔隙结构分类研究[J].地学前缘,2013,20(2):77-85.]
[2]Bai Bin,Zhu Rukai,Wu Songtao,et al.New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir[J].China Petroleum Exploration,2014,19(3):78-86.[白斌,朱如凯,吴松涛,等.非常规油气致密储层微观孔喉结构表征新技术及意义[J].中国石油勘探,2014,19(3):78-86.]
[3]Josh M,Esteban L,Delle Piane C,et al.Laboratory characterization of shale properties[J].Journal of Petroleum Science and Engineering,2012,(88-89):107-124.
[4]Li Miao,Luo Jinglan,Liu Xinshe,et al.Impact of pore structure on low to very low permeability sandstone reservoir percolation characteristics:A case study from the He8 reservoir of the Upper Paleozoic in the eastern Ordos Basin[J].Chinese Journal of Geology,2013,48(4):1148-1163.[李杪,罗静兰,刘新社,等.孔隙结构对低渗_特低渗砂岩储层渗流特征的影响——以鄂尔多斯盆地东部上古生界盒8段储层为例[J].地质科学,2013,48(4):1148-1163.]
[5]Jiang Yuqiang,Chen Lin,Jiang Chan,et al.Characteristics techniques and trends of the pore structure of tight reservoirs[J].Geological Science and Technology Information,2014,33(3):63-70.[蒋裕强,陈林,蒋婵,等.致密储层孔隙结构表征技术及发展趋势[J].地质科技情报,2014,33(3):63-70.]
[6]Luo Shunshe,Wei Wei,Wei Xinshan,et al.Microsructural characterization and development trend of tight sandstone reservoirs[J].Journal of Oil and Gas Technology,2013,35(9):5-10.[罗顺社,魏炜,魏新善,等.致密砂岩储层微观结构表征及发展趋势[J].石油天然气学报,2013,35(9):5-10.]
[7]Wu Wei,Liu Weiqing,Tang Xuan,et al.Organic rich shale pore characteristics of western Sichuan Depression[J].Journal of China University of Petroleum:Edition of Natural Science,2014,38(4):1-8.[吴伟,刘惟庆,唐玄,等.川西坳陷富有机质页岩孔隙特征[J].中国石油大学学报:自然科学版,2014,38(4):1-8.]
[8]Zhao Pei,Li Xianqing,Tian Xingwang,et al.Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J].Natural Gas Geoscience,2014,25(6):947-956.[赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学,2014,25(6):947-956.]
[9]Zhang Yu,Yan Jianping,Jia Xiangjuan,et al.The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formation,Sichuan Basin[J].Natural Gas Geoscience,2015,26(9):1755-1762.[张瑜,闫建萍,贾祥娟,等.四川盆地五峰组_龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系[J].天然气地球科学,2015,26(9):1755-1762.]
[10]Katz A J,Thompsonah A H.Fractal sandstone pores:Implication for conductivity and formation[J].Phyica Review Letters,1985,54(3):1325-1328.
[11]Krohn C E.Sandstone fractal and Euelidean pore volume distribution[J].Geophysical Research,1988,93(B4):328-329.
[12]Howard J J.Porosimetry measurement of shale fabric and its relationship to illite /smectite diagenesis[J].Clays and Clay Minerals,1991,39(4):355-361.
[13]Elgmati M,Zhang H,Bai B,et al.Submicron-pore characterization of shale gas plays[C].North American Unconventional Gas Conference and Exhibition,2011:246-261.
[14]Curtis M,Ambrose R,Sondergeld C,et al.Structural characterization of gas shales on the micro- and nano-scales[C].Canadian Unconventional Resources and International Petroleum Conference,2010:132-154.
[15]Lin Tong,Ran Qigui,Wei Hongxing,et al.Pore-throat characteristics of tight sandstones and its influence on reservoirs in Dibei area of the Kuqa Depression[J].Petroleum Geology & Experiment,2015,37(6):696-703.[林潼,冉启贵,魏红兴,等.库车坳陷迪北地区致密砂岩孔喉形态特征及其对储层的影响[J].石油实验地质,2015,37(6):696-703.]
[16]Meng Zhiqiang,Guo Hekun,Liu Qiang,et al.Microscopic pore structure for tight sandstone gas reservoirs in Tarim Basin[J].Journal of Central South University:Science and Technology,2015,46(8):3032-3039.[孟智强,郭和坤,刘强,等.塔里木盆地致密砂岩气储层微观孔隙结构[J].中南大学学报:自然科学版,2015,46(8):3032-3039.]
[17]Zhang Xiaodong,Yu Jing,Zhang Dahzi,et al.Accumulation conditions and exploration prospects for Shahezi Formation tight sandstone gas in Xujiaweizi Fault Depression[J].Petroleum Geology and Oilfield Development in Daqing,2014,33(5):86-91.[张晓东,于晶,张大智,等.徐家围子断陷沙河子组致密气成藏条件及勘探前景[J].大庆石油地质与开发,2014,33(5):86-91.]
[18]Li Jingkun,Liu Wei,Song Lanbin,et al.A study of hydrocarbon generation conditions of deep source rocks in Xujiaweizi Fault Depression of the Songliao Basin[J].Natural Gas Industry,2006,26(6):21-24.[李景坤,刘伟,宋兰斌,等.徐家围子断陷深层烃源岩生烃条件研究[J].天然气工业,2006,26(6):21-24.]
[19]Li Jingkun,Feng Zihui,Liu Wei,et al.Research on reservoir forming time of deep natural gas in Xujiaweizi Fault Depression in the Songliao Basin[J].Acta Petrolei Sinica,2006,27(supplement):42-46.[李景坤,冯子辉,刘伟,等.松辽盆地徐家围子断陷深层天然气成藏期研究[J].石油学报,2006,27(增刊):42-46.]
[20]Lu Jiamin,Liu Chao.Accumulation conditions and resource potential of tight glutenite gas in fault depression basins:A case study on Lower Cretaceous Shahezi Formation in Xujiaweizi Fault Depression,Songliao Basin[J].China Petroleum Exploration,2016,21(2):53-60.[陆加敏,刘超.断陷盆地致密砂砾岩气成藏条件和资源潜力——以松辽盆地徐家围子断陷下白垩统沙河子组为例[J].中国石油勘探,2016,21(2):53-60.]
[21]Bi Mingwei,Chen Shiyue,Zhou Zhaohua,et al.Characteristics and significance of microscopic pore structure in tight sandstone reservoir of the 8th member of lower Shihezi Formation in the Su 6 area of Sulige Gasfield[J].Natural Gas Geoscience,2015,26(10):1851-1861.[毕明威,陈世悦,周兆华,等.鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义[J].天然气地球科学,2015,26(10):1851-1861.]
[22]Brunauer S,Emmett P H,Teller E.Adsorption of gases in multimolecular layers[J].Journal of the American Chemical Society,1938,60(2):309-319.
[23]Barrettep,Joyner L G,Halenda P P.The determination of pore volume and area distributions in porous substances.I.Computations from Nitrogen Isotherms[J].Journal of the American Chemical Society,1951,73(1):373-380.
[24]Hou Yuguang,He Sheng,Yi Jizheng,et al.Effect of pore structure on methane sorption capacity of shales[J].Petroleum Exploration and Development,2014,41(2):248-256.[侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256.]
[25]Ren Zeying,Liu Luofu,Gao Xiaoyue,et al.Porosity characters and influence factors of Jurassic shale of the Yiqikelike structural belt in Kuqa Depression[J].Journal of Northeast Petroleum University,2014,38(2):18-25.[任泽樱,刘洛夫,高小跃,等.库车坳陷依奇克里克构造带侏罗系泥页岩孔隙特征及影响因素[J].东北石油大学学报,2014,38(2):18-25.]
[26]Luo Chao,Liu Shugen,Sun Wei,et al.Pore structure characterization of black shale in the Lower Cambrian Niutitang Formation in western Hubei and eastern Chongqing area[J].Journal of Northeast Petroleum University,2014,38(2):8-16.[罗超,刘树根,孙玮,等.鄂西_渝东地区下寒武统牛蹄塘组黑色页岩孔隙结构特征[J].东北石油大学学报,2014,38(2):8-16.]
[27]Luo Chao,Liu Shugen,Luo Zhili,et al.Pore structure characteristics of black shale in the Lower Cambrian Niutitang Formation of Nangao section in sanzhai,Guizhou Province[J].Geological Science and Technology Information,2014,33(3):93-103.[罗超,刘树根,罗志立,等.贵州丹寨南皋下寒武统牛蹄塘组黑色页岩孔隙结构特征[J].地质科技情报,2014,33(3):93-103.]

[1] 郭明强, 周龙刚, 张兵, 潘新志, 王应斌. 致密砂岩气水分布特征——以鄂尔多斯盆地东部临兴地区为例[J]. 天然气地球科学, 2020, 31(6): 855-864.
[2] 刘艳杰,程党性,邱庆伦,瓮纪昌,王晓瑜,郭力军,李朋朋,鲁新川. 南华北盆地下二叠统泥页岩孔隙特征及控制因素[J]. 天然气地球科学, 2020, 31(10): 1501-1514.
[3] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[4] 刘学珍,王雪艳,钟安宁,杨迎春,张世祥,周翔. 松辽盆地徐家围子断陷沙河子组物源特征及对储集砂体的控制作用[J]. 天然气地球科学, 2019, 30(11): 1551-1559.
[5] 王伟,朱玉双,余彩丽,赵乐,陈大友. 鄂尔多斯盆地致密砂岩储层孔喉分布特征及其差异化成因[J]. 天然气地球科学, 2019, 30(10): 1439-1450.
[6] 杨海军, 张荣虎, 杨宪彰, 王珂, 王俊鹏, 唐雁刚, 周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[7] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[8] 张艳,张春雷,高世臣. 基于SOM和HSV染色技术的致密砂岩储层地震相分析[J]. 天然气地球科学, 2018, 29(2): 259-267.
[9] 赵军, 曹刚, 武延亮. 多元隶属函数在致密砂岩储层分类中的应用[J]. 天然气地球科学, 2018, 29(11): 1553-1558.
[10] 杨智峰,曾溅辉,韩菲,冯枭,冯森,张译丹,乔俊程. 鄂尔多斯盆地西南部长6—长8段致密砂岩储层微观孔隙特征[J]. 天然气地球科学, 2017, 28(6): 909-919.
[11] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.
[12] 黄玉龙,刘春生,张晶晶,高有峰. 松辽盆地白垩系火山岩气藏有效储层特征及成因[J]. 天然气地球科学, 2017, 28(3): 420-428.
[13] 刘超. 松辽盆地徐家围子地区沙河子组气源岩与致密砂砾岩气资源潜力评价[J]. 天然气地球科学, 2017, 28(3): 429-438.
[14] 张凤奇,钟红利,魏登峰,张凤博,柳伟明,刘伟. 鄂尔多斯盆地陕北斜坡东南部长7段致密砂岩油藏成藏物性下限[J]. 天然气地球科学, 2017, 28(2): 232-240.
[15] 周露,莫涛,王振鸿,朱文慧,尚江伟,陈维力,李梅,张琪. 塔里木盆地克深气田超深层致密砂岩储层裂缝分级分组合特征[J]. 天然气地球科学, 2017, 28(11): 1668-1677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[5] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[6] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[7] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[8] 杜乐天. 国外天然气地球科学研究成果介绍与分析-----以索科洛夫的著作为主线[J]. 天然气地球科学, 2007, 18(1): 1 -18 .
[9] 孔庆芬,王可仁. 鄂尔多斯盆地西缘奥陶系烃源岩热模拟试验研究[J]. 天然气地球科学, 2006, 17(2): 187 -191 .
[10] 刘全有;刘文汇;Krooss B M;王万春;戴金星;. 天然气中氮的地球化学研究进展[J]. 天然气地球科学, 2006, 17(1): 119 -124 .