天然气地球科学

• 非常规天然气 • 上一篇    下一篇

沁水盆地中部断层发育区煤层气开发有利块段优选

倪小明1,2, 李志恒1,王延斌3,吴建光4   

  1. 1.河南理工大学能源科学与工程学院,河南 焦作 454000;
    2.中原经济区煤层(页岩)气河南省协同创新中心,河南 焦作 454000;
    3.中国矿业大学地球科学与测绘工程学院,北京 100083;
    4.中联煤层气有限责任公司,北京 100011
  • 收稿日期:2016-11-02 修回日期:2017-03-10 出版日期:2017-04-10 发布日期:2017-04-10
  • 作者简介:倪小明(1979-),男,山西临汾人,教授,博士,主要从事煤系气地质与开发方面的研究. E-mail:nxm1979@126.com.
  • 基金资助:

    河南省高校科技创新人才支持计划(编号:15HASTIT050);河南省高校科技创新团队支持计划构造煤团队(编号:14IRSTHN002)联合资助.

Favorable sections optimization about coalbed methane on developing fault blocks in central of Qinshui Basin

Ni Xiao-ming1,2,Li Zhi-heng1,Wang Yan-bin3,Wu Jian-guang4   

  1. 1.School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo 454000,China;
    2.Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic
    Region Henan Province,Jiaozuo 454000,China;3.College of Geo-science and Surveying Engineering,China University of Mining & Technology,Beijing 100083,China;
    4.China United Coalbed Methane Co.,Ltd.,Beijing,100011,China
  • Received:2016-11-02 Revised:2017-03-10 Online:2017-04-10 Published:2017-04-10

摘要:

查明断层发育区煤层气开发的有利块段是准确井位部署、减少工程盲目投资的重要保障。根据沁水盆地中部柿庄南区块煤层气勘探开发资料,应用构造拉平法和波叠加理论对3#煤层经历燕山期、喜马拉雅早期、喜马拉雅晚期后的底板形迹恢复,并划分出18个块段。根据气/水分异现象、构造曲率法、煤体结构观测法等得出了多期构造运动作用后不同块段内储层压力、渗透率的差异。在此基础上评价出煤层气开发的有利块段、较有利块段。结果表明:多期构造运动形成的正断层附近气体逸散、煤体破碎是造成其附近煤层气井产量低的主要原因;断层间隔区域底板相对高值块段渗透率低、储层压力低,产气潜力小;底板相对低值块段渗透率低、储层压力相对高,产气潜力中等;底板相对中值块段渗透率较好,产气潜力好。现场煤层气井的实际产气数据验证了理论分析的准确性。该研究成果为断层发育区煤层气有利块段优选提供了一种思路和借鉴。

关键词: 构造动力条件, 煤层气, 断层发育区, 渗透率

Abstract:

Finding out favorable CBM development sections in developing fault areas can deploy wells placement accurately and reduce the blind investment.According to the data on the southern of Shizhuang area,the floor traces were recovered about 3# coal seam after tectonic movement like stage of Yanshan,the early stage of Himalayan and the late stage of Himalayan by tectonic leveling method and wave superposition theory,the areas were divided into 18 blocks.According to the gas/water differentiation phenomenon,structural curvature method,coal structure observation method,the differences about the coal reservoir pressure and permeability after the tectonic movement effects were obtained.Then the favorable block and favorable block of CBM development were evaluated.The results show that:the escaping gas and formed coal near normal faults are the main reasons for low gas production.The relative high value blocks in the floor elevation in faults interval zones are of low permeability and low reservoir pressure,and gas potential is small;the relative low value blocks in the floor elevation in faults interval zones are of low permeability and relatively high reservoir pressure,and gas potential is medium;the relatively middle value blocks in the floor elevation in faults interval zones are of better permeability,and gas potential is better.The actual gas production about CBM wells verified the accuracy of theoretical analysis.The studying results can provide idea and reference for optimum favorable segments in developing fault areas.

Key words: Tectonic dynamic condition, Coalbed methane, Developing fault area, Permeability

中图分类号: 

  • P618.11

[1]Chen Yanjun.The Main Controlling Factors of Coalbed Methane Enrichment and Enrichment of Blocks in Southern Qinshui Basin[D].Jingzhou:Yangtze University,2013:4.[陈彦君.沁水盆地南部煤层气富集主控因素及富集区块优选[D].[HJ2mm]荆州:长江大学,2013:4]
[2]Levine J R,Davis A.Optical anisotropy of coals as an indicator of tectonic deformation,Braod Top Coal Field,Pennsylvania[J].Geol.Soc.America Bull,1984,95(1):100-108.
[3]Lu Y M,Tang D Z,Xu H,et al.Production characteristics and the key factors in high-rank coalbed methane fields:A case study on the Fanzhuang block,Southern Qinshui Basin,China[J].International Journal of Coal Geology,2012,96-97(4):93-108.
[4]Meng Zhaoping,Hou Quanling.Coupling model of stress-dependent per meability in high-rank coal reservoir and its control mechanism[J].Chinese Journal of Geophysics,2013,56(2):667-675.[孟召平,侯泉林.高煤级煤储层渗透性与应力耦合模型及控制机理[J].地球物理学报,2013,56(2):667-675.]
[5]Qin Yong,Zhang Deming,Fu Xuehai,et al,A discussion on correlation of modern tectonic stress field physical properties of coalre servirs in central and sounthern Qinshui Basin[J].Geological Reserview,1999,45(6):576-583.[秦勇,张德民,傅雪海,等.山西沁水盆地中、南部现代构造应力场与煤储层物性关系之探讨[J].地质评论,1999,45(6):576-583.]
[6]Ni Xiaoming,Yang Yanhui,Wang Yanbin,et al.Study on gas production and water production characteristics of CBM vertical wells undermulti period tectonic movement of un-development fault in central south Qinshui Basin[J].Journal of China Coal Society,2016,41(4):921-930.[倪小明,杨艳辉,王延斌,等 沁中南断层不发育区多期构造运动作用下煤层气直井产水产气特征[J].煤炭学报,2016,41(4):921-930.]
[7]Meng Z P,Zhang J C,Wang R.In-situ stress,pore pressure,and stress-dependent permeability in the southern Qinshui Basin[J].International Journal of Rock Mechanics and Mining Sciences,2011,48(1):122-131.
[8]Wu Caifang,Qin Yong,Fu Xuehai,et al.Macroscopic dynamic energies for the formation of coalbed gas reservoirs and their geological evolution:A case study from Qinshui Basin in Shanxi Province[J].Earth Science Frontiers,2005,12(3):299-30.
[吴财芳,秦勇,傅雪海,等.煤层气成藏的宏观动力能条件及其地质演化过程——以山西沁水盆地为例[J].地学前缘,2005,03:299-308.]
[9]Butala S J M,Medina J C,Taylor T Q,et al.Mechanisms and kinetics of reactions leading to natural gas formation during coal maturation[J].Energy and Fuels,2000,14(2):235-259.
[10]Wang Shengquan,Wang Guirong,Chang Qing,et al.Controlling effect of the fold neutral plane on coal bed[J].Coal Geology & Exploration,2006,34(4):16-18.[王生全,王贵荣,常青,等.褶皱中和面对煤层的控制性研究[J].煤田地质与勘探,2006,34(4):16-18.]
[11]Ni Xiaoming,Wang Yanbin,Jie Mingxun,et al.Stress influence in different tectonic positions on fracturing interstitial morphology[J].Journal of China Coal Society,2008,33(5):505-508.[倪小明,王延斌,接铭训,等.不同构造部位地应力对压裂裂缝形态的控制[J]煤炭学报,2008,33(5):505-508.]
[12]Li Yue,Lin Yuxiang,Yu Tengfei.Tectonic Evolution of Qinshui Basin and free gas reservoir control[J].Journal of Guilin University of Technology,2011,31(4):481-487.[李月,林玉祥,于腾飞.沁水盆地构造演化及其对游离气藏的控制作用.[J]桂林理工大学学报,2011,31(4):481-487.]
[13]Qin Yong,Jiang Bo,Wang Jiyao,et al.Coupling control of tectonic dynamical conditions to coalbed methane reservoir formation in the Qinshui Basin,Shanxi,China[J].Acta Geologica Sinica,2008,82(10):1355-1362.[秦勇,姜波,王继尧,等.沁水盆地煤层气构造动力条件耦合控藏效应[J].地质学报,2008,82(10):1355-1362.]
[14]Zhang Jianbo,Qin Yong,Wang Hongyan,et al.Structural prediction of high permeability coal reservoir distribution[J].Geoogical Journal of China Universities,2003,9(3):359-364.[张建博,秦勇,王红岩,等.高渗透性煤储层分布的构造预测[J].高校地质学报,2003,9(3):359-364.]
[15]Guo Hongyu,Su Xianbo,Xia Daping,et al.Relationship of the permeability and geological strength index(GSI)of coal reservoir and its significance[J].Journal of China Coal Society.2010,35(8):1319-1322.[郭红玉,苏现波,夏大平,等.煤储层渗透率与地质强度指标的关系研究及意义[J].煤炭学报,2010,35(8):1319-1322.]

[1] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[2] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[4] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[5] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[6] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[7] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[8] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[9] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[10] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[11] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[12] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[13] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[14] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[15] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!