天然气地球科学

• 天然气地质学 • 上一篇    下一篇

基于三维激光扫描技术的裂缝发育规律和控制因素研究——以塔里木盆地库车前陆区索罕村露头剖面为例

曾庆鲁1,张荣虎1,卢文忠1,王波1,王春阳2   

  1. 1.中国石油杭州地质研究院,浙江 杭州 310023;
    2.中国石油东方地球物理公司研究院库尔勒分院,新疆 库尔勒 841001
  • 收稿日期:2016-11-17 修回日期:2017-02-08 出版日期:2017-03-10 发布日期:2017-03-10
  • 作者简介:曾庆鲁(1985-),男,山东郓城人,工程师,硕士,主要从事沉积储层和野外建模研究. E-mail:zengql_hz@petrochina.com.cn.
  • 基金资助:

    国家科技重大专项(编号:2016ZX05003-001-002;2016ZX05001-002-003);国家重点基础研究发展计划“973”项目(编号:2011CB201104)联合资助.

Fracture development characteristics and controlling factors based on 3D laser scanning technology:An outcrop case study of Suohan village,Kuqa foreland area,Tarim Basin

Zeng Qing-lu1,,Zhang Rong-hu1,Lu Wen-zhong1,Wang Bo1,Wang Chun-yang2   

  1. 1.PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China;
    2.Korla Branch of East Geophysical Exploration Company,China National Petroleum Corp.,Korla 841001,China
  • Received:2016-11-17 Revised:2017-02-08 Online:2017-03-10 Published:2017-03-10

摘要:

裂缝是影响致密砂岩储层天然气产能的主要因素,但井下裂缝的产状、规模和面孔率很难直接测量。通过选取与目的层地质情况相似的典型露头剖面,在人工测量、取样和室内分析化验的基础上,利用激光扫描技术对其进行多次覆盖以获取三维点云数据,配合高分辨率数码照片和人工实测裂缝信息,在数据体剖面上对裂缝进行精细解释,借助计算机模拟技术建立数字化裂缝模型和储层地质模型,更为准确地展示了研究区裂缝发育规律和控制因素,为井下储层预测提供更真实的地质信息。结果表明,研究区主要发育3组优势倾向剪切裂缝,倾角大,延伸长度短,裂缝间距呈略正态分布。裂缝开度与产状密切相关,具有双峰特征,分别为0.2~0.4mm和0.8~1mm。横向上单组和双组优势裂缝疏密相间分布,可划分为贯穿缝带和层间缝带,其中贯穿缝带裂缝具有较大的延伸长度和间距,较小的面密度且大部分贯穿邻近泥岩,后者正好相反。定量计算了剖面上11个单砂体的裂缝面孔率,范围为0.026%~0.081%,平均为0.05%,水下分流河道砂体要好于河口坝和远砂坝。裂缝发育规模受岩性、层厚、最大古主应力和岩矿成分等多个因素控制,之间存在较好的幂指数相关关系。

关键词: 三维激光扫描技术, 裂缝, 分布规律, 控制因素, 野外露头, 库车前陆区

Abstract:

Fracture is of primary importance to the productivity of gas from many tight sandstone reservoirs in the Kuqa Depression,Tarim Basin,NW China,but the orientation,size and plane porosity of fractures in the subsurface are difficult to be measured directly.In this paper,by choosing a typical outcrop which has similar geological situation with the target stratum,on the basis of the conventional observation,systematic sampling and laboratory analysis,taking advantage of holographic laser scanning technology to obtain three-dimensional point cloud data with multi-level covering,matching with high-resolution digital photos and artificially measured information,the 3-D positions of natural fractures are extracted strictly in the data volume section.Furthermore,the fracture patterns and controlling factors are revealed more accurately with the fracture and reservoir model founded by computer simulation technology.It is founded that three groups of shear fractures are mainly developed with large inclination,short trace length and small spacing of normal distribution.The fracture aperture is related to the orientation with bimodal distribution of 0.2-0.4mm and 0.8-1mm.The fracture patterns provide a literal distribution of penetrating fracture zone and interlayer fracture zone with a single and a double set of advantage orientation respectively.The fractures in the former zone have greater trace length,greater spacing,and smaller surface density and run through the adjacent shale mostly while the latter is just the opposite.The plane porosity of fractures in 11 single sandbodies of different microfacies in the study section has been calculated quantitatively with a range of 0.026%-0.081% and an average of 0.05%.The sandbodies of underwater distributary channel are better than mouth bar and distal bar.It turned out that the size of fracture is controlled by lithology,bed thickness,maximum paleostress and rock composition with a good exponential relationship.

Key words: 3D laser scanning technology, Fracture, Development characteristics, Controlling factors, Outcrop, Kuqa foreland area

中图分类号: 

  • TE121.1

[1]Jia Chengzao,Pang Xiongqi.Research process and main development directions of deep hydrocarbon geological theories[J].Acta Petroleum Sinica,2015,36(12):1457-1469.[贾承造,庞雄奇.深层油气地质理论研究进展与主要发展方向[J].石油学报,2015,36(12):1457-1469.]
[2]Zou Huayao,Zhao Chunming,Yin Zhijun,et al.Fracture-occurring outcrop model in Neoarchean crystalline rock-buried hill,Bohai Bay Basin,north China[J].Natural Gas Geoscience,2013,24(5):879-855.[邹华耀,赵春明,尹志军,等.渤海湾盆地新太古代结晶岩潜山裂缝发育的露头模型[J].天然气地球科学,2013,24(5):879-885.]
[3]Zhang Jinxuan,Jin Qiang.Characteristics of fractures and there hydrocarbon reservoir meanings for the Archean outcrop in Laiwu area,Shandong Province[J].Petroleum Geology & Experiment,2003,25(4):371-374.[张敬轩,金强.山东莱芜地区太古界露头裂缝特征及其油气储层意义[J].石油实验地质,2003,25(4):371-374.]
[4]Gao Xia,Xie Qingbin.Advances in identification and evaluation of fracture[J].Progress in Geophysics,2007,22(5):1460-1465.[高霞,谢庆宾.储层裂缝识别与评价方法新进展[J].地球物理学进展,2007,22(5):1460-1465.]
[5]Hencher S R.Characterizing discontinuities in naturally fractured outcrop analogues and rock core:The need to consider fracture development over geological time[J].Geological Society London Special Publications,2013,374(1):113-123.
[6]Watkins H,Bond C E,Healy D,et al.Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop[J].Journal of Structural Geology,2015,72:67-82.
[7]Ding Wenlong,Wang Xinghua,Hu Qiujia,et al.Progress in tight sandstone reservoir fracture reseach[J].Advance in Earth Science,2015,30(7):737-750.[丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展,2015,30(7):737-750.]
[8]Olariu M I,Ferguson J F,Aiken C L V,et al.Outcrop fracture characterization using terrestrial laser scanners:Deep-water Jackfork sandstone at Big Rock Quarry,Arkansas[J].Geosphere,2008,4(1):247-259.
[9]Wilson C E,Aydin A,Karimi-Fard M,et al.From outcrop to flow simulation:Constructing discrete frature models from a LIDAR survey[J].AAPG Bulletin,2011,95(11):1883-1905.
[10]Zhang Huiliang,Zhang Ronghu,Yang Haijun,et al.Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir:A Cretaceous example from Kuqa foreland basin[J].Acta Petrologica Sinica,2012,28 (3):827-835.[张惠良,张荣虎,杨海军,等.构造裂缝发育型砂岩储层定量评价方法及应用——以库车前陆盆地白垩系为例[J].岩石学报,2012,28(3):827-835.]
[11]Zhang Huiliang,Zhang Ronghu,Yang Haijun,et al.Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:A case study of Cretaceous Bashenjiqike Formation in Kelasu tectonic zone in Kuqa foreland basin,Tarim,NW China[J].Petroleum Exploration and Development,2014,41(2):158-167.[张惠良,张荣虎,杨海军,等.超深层裂缝—孔隙型致密砂岩储集层表征与评价——以库存前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发,2014,41(2):158-167.]
[12]Zeng Lianbo,Zhou Tianwei.Reservoir fracture distribution law of Kuqa Depression in Tarim Basin[J].Natural Gas Industry,2004,24(9):23-25.[曾联波,周天伟.塔里木盆地库车坳陷储层裂缝分布规律[J].天然气工业,2004,24(9):23-25.]
[13]Zhang Zhongpei,Wang Qingchen.Characteristics of joint and shear fractures and indication on regional stress field transfer[J].Science in China:Series D,2004,34(supplement I):63-73.[张仲培,王清晨.库车坳陷节理和剪切破裂发育特征及其对区域应力场转换的指示[J].中国科学:D辑,2004,34(增刊I):63-73.]
[14]Wang Zhenyu,Tao Xiayan,Fan Peng,et al.Distribution rule fractures and their effect on deliverability in sandstone reservoir,Dabei Gasfield,Kuqa foreland basin[J].Petroleum Geology and Recovery Efficiency,2014,21(2):51-56.[王振宇,陶夏妍,范鹏,等.库车坳陷大北气田砂岩气层裂缝分布规律及其对产能的影响[J].油气地质与采收率,2014,21(2):51-56.]
[15]Wang Ke,Dai Junsheng,Jia Kaifu,et al.Research on development regularity of structural fractures in sand-mud interbed of A Gasfield,Kuqa Depression[J].Journal of Southwest Petroleum University:Science & Technology Edition,2013,35(2):63-70.[王珂,戴俊生,贾开富,等.库车坳陷A气田砂泥岩互层构造裂缝发育规律[J].西南石油大学学报:自然科学版,2013,35(2):63-70.]
[16]Gong Lei,Zeng Lianbo,Du Yijing,et al.Influence of structural diagenesis on fracture effectiveness:A case study of the Cretaceous tight sandstone reservoirs of Kuqa foreland basin[J].Journal of China University of Mining & Technology,2015,44(3):514-519.[巩磊,曾联波,杜宜静,等.构造成岩作用对裂缝有效性的影响_—以库车前陆盆地白垩系致密砂岩储层为例[J].中国矿业大学学报,2015,44(3):514-519.]
[17]Hu Tao,Zhang Boqiao,Shu Zhiguo.The structural characters of a fan-delta penesequence of Cretaceous,Kuqa Depression[J].Journal of  Mineralogy and Petrology,2003,23(2):87-89.[胡涛,张柏桥,舒志国.库车坳陷白垩系一个扇三角洲准层序的结构特征[J].矿物岩石,2003,23(2):87-89.]
[18]Dai Shengshan,Li Tianfeng.The development and application prospects of ground three-dimensional laser scanning technology[J].Modern Surveying and mapping,2009,32(4):11-12.[戴升山,李田凤.地面三维激光扫描技术的发展与应用前景[J].现代测绘,2009,32(4):11-12.]
[19]Bellian J A,Kerans C,Jennette D C.Digital outcrop models:Applications of terrestrial scanningLIDAR technology in stratigraphic modeling[J].Journal of Sedimentary Research,2005,75(2):166-176.
[20]Janson X,Kerans C,Bellian J A,et al.Three-dimensional geological and synthetic model of Early Permian redeposited basinal carbonate deposits,Victorio Canyon,West Texas[J].AAPG Bulletin,2007,91(10):1405-1436.
[21]Zahm C K,Zahm L C,Bellian J A.Integrated fracture prediction using sequence stratigraphy within a carbonate fault damage zone,Texas,USA[J].Journal of Structural Geology,2010,32(9):1363-1374.
[22]Burton D,Dunlap D B,Wood L J,et al.Lidar intensity as a remote sensor of rock properties[J].Journal of Sedimentary Research,2011,81(5):339-347.
[23]Jacquemyn C.Diagenesis and Application of LiDAR in Reservoir Analogue Studies:Karstification in the Cretaceous Apulia Carbonate Platform Dolomitization in the Triassic Latemar Carbonate Buildup[D].Leuven:KU Leuven,2013:1-192..
[24]Slob S,Knapen B V,Hack R,et al.Method for Automated Discontinuity Analysis of Rock Slopes with Three-dimensional Laser Scanning[C].Proceedings of Transportation Research Board84 Annual Meeting,January 9-13,Washington DC,2005,(1913):187-194.
[25]Kurz T H,Buckley S J,Howell J A,et al.Geological outcrop modelling and interpretation using ground based hyperspectral and laser scanning data fusion[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2008,37(Par+B8):1229-1234.
[26]Buckley S J,Howell J A,Enge H D,et al.Terrestrial laser scanning in geology:data acquisition,processing and accuracy considerations[J].Journal of the Geological Society,2008,165(3):625-638.
[27]Gischig V,Amann F,Moore J R,et al.Composite rock slope kinematics at the current randa instability,switzerland,based on remote sensing and numerical modeling[J].Engineering Geology,2011,118(1-2):37-53.
[28]Hodgetts D.Laser scanning and digital outcrop geology in the petroleum industry:A review[J].Marine & Petroleum Geology,2013,46(46):335-354.
[29]Liu Zhihong,Lu Huafu,Li Xijian,et al.Tectonic evolution of Kuqa rejuvenated foreland basin[J].Scientia Geologica Sinica,2000,35(4):482-492.[刘志宏,卢华复,李西建,等.库车再生前陆盆地的构造演化[J].地质科学,2000,35(4):482-492.]
[30]Rives T,Razack M,Petit J-P,et al.Joint spacing:Analogue and numerical simulations[J].Journal of Structural Geology,1992,14(8/9):925-937.
[31]Laubach S E.Fracture Patterns in Low-permeability-sandstone Gas Reservoir Rocks in the Rocky Mountain Region[C].SPE Rocky Mountain Regional// Low Permeability Reservoirs Symposium and Exhibition.Denver,CO,USA,15-17 April 1991:501-510.
[32]Feng Jianwei,Dai Junsheng,Liu Meili.Theoretical model about fracture porosity,permeability and stress field in the low-permeability sandstone[J].Journal of Geomechanics,2011,17(4):303-311.[冯建伟,戴俊生,刘美利.低渗透砂岩裂缝孔隙度、渗透率与应力场理论模型研究[J].地质力学学报,2011,17(4):303-311.]
[33]Wang Xiaochang,Li Jun,Zhang Songyang,et al.Numerical simulation and application of fracture surface porosity calibrating fracture porosity by logging data[J].Journal of China University of Petroleum,2011,35(2):51-56.[王晓畅,李军,张松扬,等.基于测井资料的裂缝面孔率标定裂缝孔隙度的数值模拟及应用[J].中国石油大学学报:自然科学版,2011,35(2):51-56.]
[34]Liu Xiaomei,Sun qinhua,Liu Jianxin,et al.Prediction of fracture porosity of carbonate reservoir with seismic attributes,multi-analysis and ANFIS[J].Well Logging Technology,2009,33(3):257-260.[刘晓梅,孙勤华,刘建新,等.利用地震属性、多元统计分析理论和ANFIS预测碳酸盐岩储层裂缝孔隙度[J].测井技术,2009,33(3):257-260.]
[35]Zhang Mingli,Tan Chengxuan,Tang Liangjie,et al.An analysis of the Mesozoie-Cenozoic tectonic stress field in Kuqa Depression,Tarim Basin[J].Acta Geoscientica Sinica,2004,25(6):615-619.[张明利,谭成轩,汤良杰,等.塔里木盆地库车坳陷中新生代构造应力场分析[J].地球学报,2004,25(6):615-619.]
[36]Aguilera R.Determination of subsurface distance between vertical parallel natural fractures based on core data[J].AAPG Bulletin,1988,72(7):845-851.
[37]Florez-Nio J M,Aydin A,Mavko G,et al.Fault and fracture systems in a fold and belt:An example from Bolivia[J].AAPG Bulletin,2005,89(4):471-493.
[38]Hennings P H,Olson J E,Thompson LB.Combining outcrop data and three-dimensional structural models to characterize fractured reservoirs:An example from Wyoming[J].AAPG Bulletin,2000,84(6):830-849.
[39]Handin J,Hager Jr R V,Friedman F,et al.Experimental deformation of sedimentary rocks under confining pressure:Pore pressure tests[J].AAPG Bulletin,1963,47(5):717-755.
[40]Nelson R A.Geologic Analysis of Naturally Fractured Reservoir:Huston[M].Huston:Gulf Publishing,1985:320-321.
[41]Haiqing Wu,Pollard D D.Anexperimental-study of the relationship between joint spacing and layer thickness[J].Journal of Structural Geology,1995,17(6):887-905.

[1] 徐加祥,丁云宏,杨立峰,王臻,刘哲,高睿. 基于扩展有限元的水力压裂缝间干扰及裂缝形态分析[J]. 天然气地球科学, 2018, 29(9): 1356-1363.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[4] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[5] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[6] 王国龙,杜社宽. 准噶尔盆地北三台凸起二叠系梧桐沟组一段碎屑岩储层特征及控制因素[J]. 天然气地球科学, 2018, 29(5): 675-681.
[7] 胡向阳,李宏涛,史云清,肖开华,郭艳东,李浩,高君. 川西坳陷斜坡带蓬莱镇组三段沉积特征与储层分布——以什邡地区JP32砂组为例[J]. 天然气地球科学, 2018, 29(4): 468-480.
[8] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[9] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[10] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[11] 张云钊,曾联波,罗群,张晨,吴浩,吕文雅,代全齐,朱德宇. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝特征和成因机制[J]. 天然气地球科学, 2018, 29(2): 211-225.
[12] 巫修平,张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学, 2018, 29(2): 268-276.
[13] 王权,操义军,刁帆,张金峰,郭柳汐,邹华耀. 渤海湾盆地廊固凹陷天然气成因类型及分布规律[J]. 天然气地球科学, 2017, 28(9): 1363-1374.
[14] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[15] 韩秀玲,杨贤友,熊春明,石阳,高莹,张福祥,连胜江,李向东,王萌,李福涛. 超深裂缝性厚层改造效果影响因素分析与高效改造对策[J]. 天然气地球科学, 2017, 28(8): 1280-1286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!