天然气地球科学

• 天然气开发 • 上一篇    下一篇

碳酸盐岩酸蚀蚓孔双重分形描述方法

张合文,邹洪岚,刘双双,鄢雪梅,梁冲   

  1. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2016-12-02 修回日期:2017-01-18 出版日期:2017-03-10 发布日期:2017-03-10
  • 作者简介:张合文(1982-),男,山东菏泽人,工程师,博士,主要从事油气藏增产改造方面的工作. E-mail:etczhanghw@163.com.
  • 基金资助:

    国家自然科学基金项目“复杂非均质碳酸盐岩储层水平井酸化高效布酸基础理论研究”(编号:51474182);国家科技重大专项“复杂碳酸盐岩油气藏采油采气关键技术研究与应用”(编号:201700503005)联合资助.

Dual fractal model of carbonate acidizing wormholes

Zhang He-wen,Zou Hong-lan,Liu Shuang-shuang,Yan Xue-mei,Liang Chong   

  1. Research Institute of Petroleum Exploration & Development,Beijing 100083,China
  • Received:2016-12-02 Revised:2017-01-18 Online:2017-03-10 Published:2017-03-10

摘要:

基质酸化是碳酸盐岩油气藏中应用范围最广、最经济有效的增产方式之一,而酸化最典型的特征是形成酸蚀蚓孔。由于酸岩反应影响因素多、蚓孔形态多样、生长随机性强,目前仍未形成对蚓孔的定量描述方法。对碳酸盐岩酸蚀蚓孔的定量描述主要包括确定单蚓孔形态及多蚓孔分布2部分内容,这是优化施工设计、经济有效开发此类油气藏的重要前提。为此,通过多组岩心流动实验,采用三维CT扫描后重组的手段得到了蚓孔的真实形态,并验证了岩心线性和径向流动下蚓孔的分形特征,得到了其分形维数。运用分形几何学方法,建立了单蚓孔等效长度分形计算模型,为从长度和平面分布2个维度定量描述单蚓孔提供了可能。其次,为了明确不同蚓孔在空间分布情况,建立了多蚓孔间竞争分布数学模型,并对其进行了求解和模拟分析,验证了蚓孔间竞争分布的分形性特征。在此基础上,建立了蚓孔分布双重分形模型,为定量描述三维酸蚀蚓孔形态奠定了基础,也为更准确优化酸化施工提供了可能。

关键词: 采油/气工程, 酸化, 碳酸盐岩, 酸蚀蚓孔, 分形

Abstract:

Matrix acidizing is one of the most popular and cost-efficient method for carbonate stimulation.The main characteristic of carbonate acidizing is forming wormholes.Until now,there is no effective model to describe these wormholes quantitatively,because of so many affecting parameters,wormhole types and their growing randomness.There are two main parts to calculate carbonate acidizing wormholes parameters,distribution and its length of single wormhole and competition relationship between several wormholes.This is an important prerequisite to optimize the acidizing treatment design and develop such carbonate reservoir cost-effectively.To this end,several sets of core flow experiments were completed,and the actual shape of wormhole were reorganized using three dimensional computed tomography scan facility.By analyzing these wormholes,fractal characteristic was proved to be both of linear and radial flow status.Their fractal dimensions,which are key parameter for describing fractal geometry,were given then.Based on previous conclusions,fractal model of dingle wormhole equivalent length was established,which make it possible to describe wormhole considering both length and plane distribution.Secondly,in order to clarify the relationship between several different wormholes,competition mathematic model of multiple wormholes was given.After solution and simulation analysis of this model,its fractal characteristic and fractal dimension were also obtained.On this basis,dual fractal mathematic model of wormholes was finally established,which make it possible to describe three-dimensional shape of wormhole quantitatively and optimize a more accurate acidizing treatment design.

Key words: Oil/gas production engineering, Acidizing;Carbonate, Wormhole, Fractal

中图分类号: 

  • TE357

[1]Jia Xiaole,He Deingfa,Tong Xiaoguang,et al.Distribution of global giant oil and gas field[J].China Petroleum Exploration,2011,3:1-7.[贾小乐,何登发,童晓光,等.全球大油气田分布特征[J].中国石油勘探,2011,3:1-7.]
[2]Wang Zhecheng,Zhao Wenzhi,Hu Suyun,et al.Reservoir types and distribution characteristics of large marine carbonate oil and gas field in China[J].Oil & Gas Geology,2013,34(2):153-159.[汪泽成,赵文智,胡素云,等.我国海相碳酸盐岩大油气田油气藏类型及分布特征[J].石油与天然气地质,2013,34(2):153-159.]
[3]Konstantin M F,Alexander S S,Tayana A K.Carbonate acidizing:conjuction[C]//paper 136409-MS presented at the SPE Russian Oil and Gas Conference and Exhibition,26-28 October 2010,Moscow,Russia.DOI:http://dx.doi.org/10.2118/136409-MS.
[4]Robert S T,Glen C F,Fraser M.Acidizing-lessons from the past and new opportunities[C]//paper 162238-MS presented at the SPE Canadian Unconventional Resources Conference,30 October-1 November 2012,Calgary,Alberta,Canada.DOI:http://dx.doi.org/10.2118/162238-MS.
[5]Albertus R,Curtis W L,Edin O.Managing uncertainty of reservoir heterogeneity and optimizing acid placement in thick carbonate reservoirs[C]//paper 155079-MS presented at the SPE International Production and Operations Conference & Exhibition,14-16 May 2012,Doha,Qatar.DOI:http://dx.doi.org/10.2118/155079-MS.
[6]Gerard G,Nitika K,Malcolm S T.The optimum injection rate for wormhole propagation:myth or reality[C]//paper 121464-MS presented at the 8th European Formation Damage Conference,27-29 May 2009,Scheveningen,The Netherlands.DOI:http://dx.doi.org/10.2118/121464-MS.
[7]Tianping Huang,ADHill,RSSchechter.Reaction rate and fluid loss:the keys to wormhole initiation and propagation in carbonate acidizing[J].SPE Journal,2000,5(3):287-292.
[8]Gerard G,Diederik W B,Mary S D,et al.Field validation of acidizing wormhole models[C]//paper 94695-MS presented at the SPE European Formation Damage Conference,25-27 May 2005,Sheveningen,The Netherlands.DOI:http://dx.doi.org/10.2118/94695-MS.
[9]Chen Gengliang,Huang Ying.Mechanism analyzing of carbonate acidization[J].Natural Gas Industry,2006,26(1):104-108.[陈赓良,黄瑛.碳酸盐岩酸化反应机理分析[J].天然气工业, 2006,26(1):104-108.]
[10]Ahmed M G,Andrea N P,Jennifer C,et al.Insights of wormhole propagation during carbonate acidizing:constant pressure vs.constant rate[C]//paper 174790-MS presented at the SPE Annual Technical Conference and Exhibition,28-30 September 2015,Houston,Texas,USA.DOI:http://dx.doi.org/10.2118/174790-MS.
[11]Suneet S,Ding Z,Hill A D.The effect of phase saturation conditions on wormhole propagation in carbonate acidizing[J].SPE Journal,2006,11(3):273-281.
[12]Darren M,Shalawn J,Chris S,et al.Understanding wormholes in carbonates:Unprecedented experimental scale and 3D visualization[J].Journal of Petroleum Engineers,2010,62(10):78-21.
[13]Priyank M,Vemuri B.3D simulation of carbonate acidization with HCl:comparison with experiments[C]//paper 164517-MS presented at the SPE Production and Operations Symposium,23-26 March 2013,Oklahoma City,Oklahoma,USA.DOI:http://dx.doi.org/10.2118/164517-MS.
[14]Zhang Rusheng,Lu Yongjun,Ding Yunhong.New progress of wormhole during carbonate matrix acidizing or acid-fracturing[J].Oilfield Chemistry,2005,22(3):276-278.[张汝生,卢拥军,丁云宏.碳酸盐岩基质酸化/酸压裂中形成蚓孔研究新进展[J].油田化学,2005,22(3):276-278.]
[15]Li Xiaogang,Yang Zhaozhong,Su Zhengjian,et al.Fractal mathematic model for 3D acid corrosion of rough carbonate rock particles[J].Xinjiang Petroleum Geology,2010,31(2):167-170.[李小刚,杨兆中,苏建政,等.粗糙颗粒碳酸盐岩三维酸蚀分形数学模型[J].新疆石油地质,2010,31(2):167-170.]
[16]Liu Ming,Zhang Shicheng,Mou Jianye.Fractal nature of acid-etched wormholes and the influence of acid type on wormholes[J].Petroleum Exploration and Development,2012,39(5):591-596.[柳明,张士诚,牟建业.酸蚀蚓孔的分形性和酸液类型对蚓孔的影响[J].石油勘探与开发,2012,39(5):591-596.]
[17]Golfier F,Bazin B,Zarcone C,Lernormand R,Lasseux D,Quintard M.Acidizing carbonate reservoirs:numerical modeling of wormhole propagation and comparison to experiments[C]//paper 68922-MS presented at the SPE European Formation Damage Conference,21-22 May 2001,The Hague,Netherlands.DOI:http://dx.doi.org/10.2118/68922-MS.

[1] 王清龙,林畅松,李浩,韩剑发,孙彦达,何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[2] 吕正祥,王先东,吴家洋,卿元华. 渤海海域中部古近系湖相碳酸盐岩储层成岩演化特征[J]. 天然气地球科学, 2018, 29(7): 921-931.
[3] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[4] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[5] 张永庶,伍坤宇,姜营海,王鹏,蔡智洪,高发润,谭武林,高树芳,鲜本忠. 柴达木盆地英西深层碳酸盐岩油气藏地质特征[J]. 天然气地球科学, 2018, 29(3): 358-369.
[6] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[7] 魏新善,魏柳斌,任军峰,蔡郑红,周黎霞. 鄂尔多斯盆地下古生界风化壳气藏差异性[J]. 天然气地球科学, 2018, 29(2): 178-188.
[8] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[9] 胡安平,沈安江,潘立银,王永生,李娴静,韦东晓. 二元同位素在碳酸盐岩储层研究中的作用[J]. 天然气地球科学, 2018, 29(1): 17-27.
[10] 王媛,林畅松,李浩,孙彦达,何海全,王清龙,姬牧野,张曼莉. 高频层序地层格架中碳酸盐岩成岩作用研究——以哈萨克斯坦Marsel探区下石炭统谢尔普霍夫阶为例[J]. 天然气地球科学, 2018, 29(1): 28-41.
[11] 张宫,冯庆付,武宏亮,王克文,冯周. 基于核磁T2谱对数均值差异的碳酸盐岩气水识别[J]. 天然气地球科学, 2017, 28(8): 1243-1249.
[12] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[13] 王业众,段国彬,桑宇,彭华,张林,周长林,余良志,陈伟华. 衬管完井水平井新型布酸技术研究与应用——以安岳气田磨溪构造龙王庙组气藏为例[J]. 天然气地球科学, 2017, 28(8): 1264-1268.
[14] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.
[15] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!