天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究

马安来1,金之钧1,朱翠山2   

  1. 1.中国石油化工股份有限公司石油勘探开发研究院,北京 100083;
    2.长江大学资源与环境学院,湖北 武汉 430100
  • 收稿日期:2016-11-09 修回日期:2016-12-26 出版日期:2017-02-10 发布日期:2017-02-10
  • 作者简介:马安来(1969-),男,安徽淮南人,副教授,博士,主要从事油气地球化学及成藏机理研究. E-mail:maal.syky@sinopec.com.
  • 基金资助:

    中国石化科技部项目(编号:P07021;G5800-16-ZS-KJB009);国家重点基础发展规划“973”项目(编号:2012CB21480);国家油气重大专项(编号:2011ZX05005)联合资助.

Maturity and oil-cracking of the Ordovician oils from Tahe Oilfield,Tarim Basin,NW China

Ma An-lai1,Jin Zhi-jun1,Zhu Cui-shan2   

  1. 1.Petroleum Exploration & Production Research Institute,SINOPEC,Beijing 100083,China;
    2.College of Resources and Environment,Yangtze University,Wuhan 430100,China
  • Received:2016-11-09 Revised:2016-12-26 Online:2017-02-10 Published:2017-02-10

摘要:

使用生物标志化合物成熟度参数、芳烃成熟度参数和金刚烷成熟度参数对塔里木盆地塔河油田奥陶系原油成熟度进行了研究,Ts/(Ts+Tm)、C29Ts/(C29H+C29Ts)成熟度参数表明奥陶系原油基本上未达到凝析油阶段,这与芳烃甲基菲成熟度参数所反映的成熟度基本相同,而金刚烷指数MAI、MDI反映的成熟度约为1.1%~1.6%,高于生物标志化合物及甲基菲指数所反映的成熟度,成熟度的差异性反映了奥陶系原油经历了多期油气充注。原油金刚烷绝对定量分析表明甲基双金刚烷含量在Ts/(Ts+Tm)<0.55之前分布较为离散,增加缓慢,而在Ts/(Ts+Tm)>0.55之后增加迅速,对塔河油田不同层位原油金刚烷含量分析表明,塔河油田原油金刚烷基线应在15×10-6,总体而言,绝大多数奥陶系原油甲基双金刚烷含量分布在(4~35)×10-6之间,原油裂解程度基本上小于50%,表明塔河油田奥陶系深层仍具有石油勘探前景。奥陶系原油甲基双金刚烷含量呈现东高西低、南高北低的特点,指示了塔河油田奥陶系原油存在由东向西、由南向北运移的特点,与原油密度、成熟度参数反映的运移方向一致。

关键词: 金刚烷, 单金刚烷, 双金刚烷, 原油裂解, 原油成熟度, 奥陶系, 塔河油田

Abstract:

The maturity of the Ordovician oils from Tahe Oilfield of Tarim Basin,NW China was assessed by various maturity parameters,such as biomarkers,aromatic parameters and diamondoid parameters.Both Ts/(Ts+Tm) and C29Ts/(C29H+C29Ts) values indicated that the maturity of oils has not reached the condensates stages,which is in consistent with the maturity obtained by MPI-1.However the diamondoid maturity suggested that the oil maturity is in the range of 1.1%-1.6% RO,which is obviously higher than that of the maturity obtained by biomarker and MPI-1.This discrepancy of maturity may reflect the Ordovician reservoir have multiple filling history.The concentration of methyldiamantane suggested that the methyldiamantane concentration of oils is scattered and increase slowly when Ts/(Ts+Tm) value is lower than 0.55,and the content increases rapidly when Ts/(Ts+Tm) value is higher than 0.55.Based on the diamondoid concentration of oils from different age,it is proposed that the diamondoid baseline is about 15×10-6 in the Tahe Oilfield.In general,the concentration of methyldiamantane of most Ordovician oils ranges from 4×10-6  to 35×10-6,suggesting that the degree of oil-cracking is lower than 50% and the deep Ordovician has the potential of oil exploration.The distribution of the concentration of methyldiamantane is characterized by high in east,low in west,high in south and low in north,suggesting two migration pathways are from south to north, from east to west, respectively, which is consistent to the migration results obtained from oil density and maturity parameters such as Ts/(Ts+Tm).

Key words: Diamondoid, Adamantane, Diamantane, Oil-cracking, Oil maturity, Ordovician, Tahe Oilfield

中图分类号: 

  • TE133+.1

[1]Peter K E,Walters C C,Moldowan J M.The biomarkers Guide Volume 2:Biomarkers and Isotopes in Petroleum Exploration and Earth History[M].Cambridge:Cambridge University Press,2005.
[2]Ma Anlai,Jin Zhijun,Wang Yi.Problems of oil-source correlation for marine reservoirs in Paleozoic craton area in Tarim Basin and future direction of research[J].Oil & Gas Geology,2006,27(3):356-372.[马安来,金之钧,王毅.塔里木盆地台盆区海相油源对比存在的问题及进一步工作方向[J].石油与天然气地质,2006,27(3):356-372.]
[3]Farrimond P,Taylor A,TelnAEs N.Biomarker maturity parameters:The role of generation and thermal degradation[J].Organic Geochemisry,1998,29(5-7):1181-1197.
[4]Alexander R,Kagi R I,Rowland S J,et al.The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums[J].Geochimica et Cosmochimica Acta,1985,49(2):385-395.
[5]Van Aarssen B G K,Bastow T P,Alexander R et al.Distributions of methylated naphthalenes in crude oils:indicators of maturity,biodegradation and mixing[J].Organic Geochemistry,1999,30(10):1213-1227.
[6]Radke M,Welte D H.The methylphenanthrene index (MPI):a maturity parameter bases on aromatic hydrocarbons[A]//Bjoroy M,Albrecht C,Cornford C,et al.Advances in Organic Geochemistry.Wiley,Chichester,1981:504-512.
[7]Chakhmakhchev A,Suzuki M,Takayama K.Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J].Organic Geochemistry,1997,26(7/8):483-489.
[8]Chen J,Fu J,Shen G,et al.Diamondoid hydrocarbon ratios:Novel maturity indices for highly mature crude oil[J].Organic Geochemistry,1996,25(3/4):179-190.
[9]Ma Anlai.New advancement in application of diamondoids on organic geochemistry[J].Natrual Gas Geoscience,2016,27(5):851-860.[马安来.金刚烷类化合物在有机地球化学中的应用进展[J].天然气地球科学,2016,27(5):851-860.]
[10]Dhal J E,Moldowan J M,Peter K E,et al.Diamondoid hydrocarbons as indicators of natural oil cracking[J].Nature,1999,399(5):54-56.
[11]Xiao Xianming,Song Zhiguang,Liu Dehan,et al.The Tazhong hybrid petroleum system,Tarim Basin,China[J].Marine and Petroleum Geology,2000,17(1):1-12.
[12]Sun Hao,Li Sumei,Zhang Baoshou.Characteristics and genesis of marine hydrocarbons in the Halahatang Sag in the northern Tarim Basin[J].Petroleum Geology & Experiment,2015,37(6):704-712.[孙浩,李素梅,张宝收.塔里木盆地北部哈拉哈塘凹陷海相油气特征与成因[J].石油实验地质,2015,37(6):704-712.]
[13]Li Sumei,Zhang Baoshou,Xing Lantian,et al.Geochemical features of deep hydrocarbon migration and accumulation in Halahatang-Yingmaili area of the northern Tarim Basin[J].Acta Petrolei Sinica,2015,36(S2):92-101.[李素梅,张宝收,邢蓝田,等.塔北哈拉哈塘—英买力地区深层油气运移与成藏地球化学特征[J].石油学报,2015,36(S2):92-101.]
[14]Ma Anlai,Jin Zhijun,Zhu Cuishan,et al.Quantitative analysis on absolute concentration of diamondoids in oils from Tahe Oilfield[J].Acta Petrolei Sinica,2009,30(2):214-218.[马安来,金之钧,朱翠山,等.塔河油田原油中金刚烷化合物绝对定量分析[J].石油学报,2009,30(2):214-218.]
[15]Wingert W S.GC-MS analysis of diamondoid hydrocarbons in Smackover petroleum[J].Fuel,1992,71(1):37-43.
[16]Cui Jingwei,Wang Tieguan,Wang Chunjiang,et al.Quantitative assessment and significance of gas washing of oil in Block 9 of the Tahe Oilfield,Tarim Basin,NW China[J].Chinese Journal of Geochemistry,2012,31(2):165-173.
[17]Kolaczkowska E,Slougui N E,Watt D S,et al.Thermodynamic stability of various alkylated,dealkylated,and rearranged 17α- and 17β-hopnae isomers using molecular mechanics calculations[J].Organic Geochemistry,1990,16(4):1033-1038.
[18]Zhang S,Huang H,Xiao Z,et al.Geochemistry of Paleozoic marinr petroleum from the Tarim Basin,NW China(Part 2):Maturity assessment[J].Organic Geochemistry,2005,36(8):1215-1225.
[19]Zhang S,Su J,Wang X,et al.Geochemistry of Paleozoic marine petroleum from the Tarim Basin,NW China(Part 3):Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations[J].Organic Geochemistry,2011,42(11):1394-1410.
[20]Zhu G,Weng N,Wang H,et al.Origin of diamondoid and sulphur compounds in the Tazhong Ordovician condensate,Tarim Basin,China:Implications for hydrocarbon exploration in deep-buried strata[J].Marine and Petroleum Geology,2015,62(1):14-27.
[21]Cai C,Xiao Q,Fang C,et al.The effect of thermalchemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin,NW China[J].Organic Geochemistry,2016,101(11):49-62
[22]Ma A,Zhang S,Zhang D.Ruthenium-ion-catalyzed oxidation of asphaltenes of heavy oils in Lunnan and Tahe Oilfields in Tarim Basin,NW China[J].Organic Geochemistry,2008,39(11):1502-1511.
[23]Wang T G,He F,Wang C,et al.Oil filling history of the Ordovician oil reservoir in the major part of the Tahe Oilfield,Tarim Basin,NW China[J].Organic Geochemistry,2008,39(11):1637-1646.
[24]Fang C,Xiong Y,Li Y,et al.The origin and evolution of adamantane and diamantanes in petroleum[J].Geochemica et Cosmochimica Acta,2013,120(11):109-120.
[25]Springer M V,Garcia D F,Goncalves F T T,et al.Diamondoid and biomarker characterization of oils from the Llanos Orientales Basin,Colombia[J].Organic Geochemistry,2010,41(9):1013-1018.
[26]Moldowan J M,Dah J,Zinniker D,et al.Underutilized advanced geochemical technologies for oil and gas exploration and production-1.The diamondoids[J].Journal of Petroleum Science and Engineering,2015,126(1):87-96.
[27]Claypool G M,Mancini E A.Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation,southwestern Alabama[J].AAPG Bulletin,1989,73(7):904-924.
[28]McCain W D Jr,Bridges B.Volatile oils and retrograde gases:What’s the difference[J].Petroleum Engineer International,1994,66(1):35-36.
[29]Hunt J M.Petroleum geochemistry and geology[M].2nd ed.New York:W.H.Freeman and Company,1996.
[30]Duan Yi,Wang Chuanyuan,Zheng Zhaoyang,et al.Distribution of double diamantine hydrocarbons in crude oils from Tahe Oilfield and its implication for oil and gas migration[J].Natural Gas Geoscience,2007,18(5):693-696.[段毅,王传远,郑朝阳,等.塔里木盆地塔河油田原油中双金刚烷分布特征与油气运移[J].天然气地球科学,2007,18(5):693-696.]

[1] 包建平, 朱翠山, 申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学, 2018, 29(9): 1217-1230.
[2] 马安来,朱翠山,顾忆,李慧莉. 塔中地区中深1C井寒武系原油低聚硫代金刚烷含量分析[J]. 天然气地球科学, 2018, 29(7): 1009-1019.
[3] 魏新善,魏柳斌,任军峰,蔡郑红,周黎霞. 鄂尔多斯盆地下古生界风化壳气藏差异性[J]. 天然气地球科学, 2018, 29(2): 178-188.
[4] 沈安江,付小东,张友,郑兴平,刘伟,邵冠铭,曹彦清. 塔里木盆地塔东地区震旦系—下古生界碳酸盐岩油气生储条件与勘探领域[J]. 天然气地球科学, 2018, 29(1): 1-16.
[5] 陈燕燕,胡素云,李建忠,王铜山, 陶小晚. 原油裂解过程中组分演化模型及金刚烷类化合物的地球化学特征[J]. 天然气地球科学, 2018, 29(1): 114-121.
[6] 陈双,黄海平,张博原,谢增业. 原油及源内残余沥青裂解成气差异及地质意义[J]. 天然气地球科学, 2017, 28(9): 1375-1384.
[7] 刘岩,杨池银,肖敦清,廖前进,周立宏,于学敏,国建英,蒲秀刚,姜文亚,邹磊落,聂国振,刘庆新,滑双君. 裂陷湖盆深层烃类赋存相态极限的动力学过程分析——以渤海湾盆地歧口凹陷为例[J]. 天然气地球科学, 2017, 28(5): 703-712.
[8] 陈杰,张剑,方杰. 阿联酋二叠系Khuff组气藏成藏模式与成藏过程分析[J]. 天然气地球科学, 2017, 28(4): 521-528.
[9] 陈兰朴,李国蓉,吴章志,朱亚林,符浩,高鱼伟,王雨辰,王冬娅,何赛,胡静. 塔里木盆地塔河油田东南斜坡海西晚期奥陶系热液作用[J]. 天然气地球科学, 2017, 28(3): 410-419.
[10] 朱荣伟,蒋有录,刘景东,刘新社,候云东,崔小君. 鄂尔多斯盆地靖西中部地区天然气富集差异及有利勘探方向预测[J]. 天然气地球科学, 2017, 28(1): 32-42.
[11] 王建民,王佳媛. 古岩溶地貌与古岩溶储层岩溶效应分析——以鄂尔多斯盆地东部奥陶系风化壳为例[J]. 天然气地球科学, 2016, 27(8): 1388-1398.
[12] 付德亮,周世新,李靖,李源遽,马瑜. 原油裂解动力学及其相变特征和意义——以柴达木盆地北缘伊深1井为例[J]. 天然气地球科学, 2016, 27(8): 1500-1508.
[13] 谢增业,李志生,魏国齐,李剑,王东良,王志宏,董才源. 腐泥型干酪根热降解成气潜力及裂解气判识的实验研究[J]. 天然气地球科学, 2016, 27(6): 1057-1066.
[14] 郑兴平,张友,陈希光,杨钊,邵冠铭,白晓佳. 塔里木盆地东部碳酸盐岩储层特征与天然气勘探方向[J]. 天然气地球科学, 2016, 27(5): 765-771.
[15] 马安来. 金刚烷类化合物在有机地球化学中的应用进展[J]. 天然气地球科学, 2016, 27(5): 851-860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!