天然气地球科学

• 天然气开发 • 上一篇    

边、底水气藏水侵规律可视化实验研究

方飞飞1.2,李熙喆2,3,高树生2,3,薛蕙2,3,朱文卿2,3,刘华勋2,3,安为国2,3,李程辉1,2   

  1. 1.中国科学院大学,北京 100190;
    2.中国科学院渗流流体力学研究所,河北 廊坊  065007;
    3.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007
  • 收稿日期:2016-06-24 修回日期:2016-08-17 出版日期:2016-12-10 发布日期:2016-12-10
  • 作者简介:方飞飞(1991-),男,安徽阜阳人,博士在读,主要从事石油天然气开发与渗流机理研究. E-mail:fangfeifei13@mails.ucas.ac.cn.
  • 基金资助:
    国家科技重大专项“裂缝孔隙型边、底水气藏水侵机理及其对开发的影响”(编号:2016ZX03005)资助.

Visual simulation experimental study on water invasion rulesof gas reservoir with edge and bottom water

Fang Fei-fei1,2,Li Xi-zhe2,3,Gao Shu-sheng2,3,Xue Hui2,3,Zhu Wen-qing2,3,Liu Hua-xun2,3,An Wei-guo2.3,Li Cheng-hui1,2   

  1. 1.University of Chinese Academy of Sciences,Beijing 100190,China;
    2.Institute of Porous Flow and Fluid Mechanics,Chinese Academy of Sciences,Langfang 065007,China;
    3.Langfang Branch,PetroChina Research Institute of Petroleum Exploration and Development,Langfang 065007,China
  • Received:2016-06-24 Revised:2016-08-17 Online:2016-12-10 Published:2016-12-10

摘要: 针对边、底水气藏开发过程中的水侵问题,根据不同类型气藏的主要储集空间特征设计相对应的可视化物理模型,并利用水侵规律物理模拟实验系统开展了孔隙型、裂缝型、孔洞型和缝洞型气藏水侵规律可视化实验研究。结果表明:孔隙型气藏采出程度高,水侵前缘近似均匀推进,见水后水气比增加缓慢;水体在裂缝型气藏中优先沿着裂缝快速突进,同时在毛细管力和润湿性的作用下,储层基质发生渗吸,封闭基质中的气体,在缝网中间形成大量残余气,造成裂缝型气藏采出程度的大幅下降;储层中孤立的洞和缝主要为气藏提供储集空间,水体优先进入洞和缝,在局部对水侵影响较为显著,但对整体水侵前缘的推进影响不大;缝、洞沟通的气藏,水体沿着裂缝快速的充满洞,当出口端通过缝、洞与边、底水沟通时,气藏将在短时间内因为水淹而停产,此时气藏仅仅动用了缝和洞中的气体。研究成果对边、底水气藏的有效开发具有指导和实践意义。

关键词: 边、底水气藏, 水侵规律, 可视化, 水气比, 采出程度, 实验研究

Abstract: In view of the water invasion in development of gas reservoir with edge and bottom water,the visual physical experiment model is designed based on the main reservoir space characteristics of different types of gas reservoirs,and physical simulation experiment system is used to research the water invasion rules of pore type,fracture type,hole type and fracture-cavern type gas reservoir.The result shows that pore type gas reservoir recovery degree is high,the leading edge of water is approximately uniform advance,and water-gas ratio increases slowly after water breakthrough.Water goes in priority in a quick dash along the fracture,gradually invades matrix by the capillary force and block the gases in the matrix,so a large amount of gas is blocked in the fracture gas reservoir,which leads to sharp fall of fracture type gas reservoir recovery degree.The isolated holes and cracks in reservoir mainly provide storage space,and water first goes into the hole and slot,which has significant influence on local water invasion,but has little effect on the whole water invasion’s propulsion.The gas reservoir is linked by cracks and holes,water swiftly fills holes along the cracks.When the outlet contacts with the edge and bottom water through cracks and holes,gas reservoir will be shut down because of the water in a short time.At that time the gas reservoir only use the gases in the seams and holes.The results of research have important guidance and practical significance for the effective development of edge and bottom water reservoir.

Key words: Gas reservoir with edge and bottom water, Water invasion rules, Visualization, Water gas ratio, Recovery percent, Experimental study

中图分类号: 

  • TE34

[1]Feng Xi,Zhong Bing,Yang Xuefeng,et al.Effective water influx control in gas reservoir development:Problems and countermeasures[J].Natural Gas Industry,2015,35(2):35-40.[冯曦,钟兵,杨学锋,等.有效治理气藏开发过程中水侵影响的问题及认识[J].天然气工业,2015,35(2):35-40.]
[2]Li Tao.Characteristics of water influx in the development of the Puguang Gasfield,Sichuan Basin[J].Natural Gas Industry,2014,34(6):65-71.[李涛.普光气田开发过程水侵特征分析[J].天然气工业,2014,34(6):65-71.]
[3]Guo Ping,Jing Shasha,Peng Caizhen.Technology and countermeasures for gas recovery enhancement[J].Natural Gas Industry,2014,34(2):48-55.[郭平,景莎莎,彭彩珍.气藏提高采收率技术及其对策[J].天然气工业,2014,34(2):48-55.]
[4]Dai Yong,Qiu Enbo,Shi Xinpu,et al.Water-yielding mechanism and water control measures in Kelameili volcanic gas field,Junggar Basin[J].Xingjiang Petroleum Geology,2014,35(6):694-698.[戴勇,邱恩波,石新朴,等.克拉美丽火山岩气田水侵机理及治理对策[J].新疆石油地质,2014,35(6):694-698.]
[5]Li Yong,Zhang Jing,Li Baozhu,et al.New method of aquifer influx risk classification for wells in gas reservoir with aquifer support[J].Natural Gas Geoscience,2016,27(1):128-133.[李勇,张晶,李保柱,等.水驱气藏气井见水风险评价新方法[J].天然气地球科学,2016,27(1):128-133.]
[6]Hu Yong,Li Xizhe,Wan Yujin,et al.The experimental study of water invasion mechanism in fracture and the influence on the development of gas reservoir[J].Natural Gas Geoscience,2016,27(5):910-917.[胡勇,李熙喆,万玉金,等.裂缝气藏水侵机理及对开发影响实验研究[J].天然气地球科学,2016,27(5):910-917.]
[7]Liu Huaxun,Ren Dong,Gao Shusheng,et al.Water influx mechanism and development strategy of gas reservoirs with edge and bottom water[J].Natural Gas Industry,2015,35(2):47-53.[刘华勋,任东,高树生,等.边、底水气藏水侵机理与开发对策[J].天然气工业,2015,35(2):47-53.]
[8]Jiao Chunyan,Zhu Huayin,Hu Yong,et al.The physical experiment and numerical model of water invasion to the gas reservoir[J].Science Technology and Engineering,2014,14(10):191-194.[焦春艳,朱华银,胡勇,等.底水气藏水侵物理模拟实验与数学模型[J].科学技术与工程,2014,14(10):191-194.]
[9]Hu Yong,Shao Yang,Lu Yongliang,et al.Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir[J].Natural Gas Geoscience,2011,22(1):176-181.[胡勇,邵阳,陆永亮,等.低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J].天然气地球科学,2011,22(1):176-181.]
[10]Shen Weijun,Li Xizhe,Liu Xiaohua,et al.Physical simulation of water influx mechanism in fractured gas reservoirs[J].Journal of Central South University:Science and Technology,2014,45(9):3283-3287.[沈伟军,李熙喆,刘晓华,等.裂缝性气藏水侵机理物理模拟[J].中南大学学报:自然科学版,2014,45(9):3283-3287.]
[11]Persoff P Pruessk.Two-phase flow visualization and relative permeability measurement in natural rough-walled rock fractures[J].Water Resources Research,1995,5(31):1175-1186.
[12]Fan Huaicai,Zhong Bing,Li Xiaoping,et al.Studies on water invasion mechanism of fractured-watered gas reservoir[J].Natural Gas Geoscience,2012,23(6):1179-1184.[樊怀才,钟兵,李晓平,等.裂缝型产水气藏水侵机理研究[J].天然气地球科学,2012,23(6):1179-1184.]
[13]Yan Youjun,Chen Junyu,Guo Jingshu,et al.A visualized experiment on gas-water two-phase seepage through oolitic reservoirs in the Longgang Gasfield,Sichuan Basin[J].Nature Gas Industry,2012,32(1):64-66.[鄢友军,陈俊宇,郭静姝,等.龙岗地区储层微观鲕粒模型气水两相渗流可视化实验及分析[J].天然气工业,2012,32(1):64-66.]
[14]Chen Zhaohui,Xie Yiting,Deng Yong.Experiment of microscopic displacement of gas and water in loose sandstone gas reservoir of Sebei[J].Journal of Southwest Petroleum University:Science & Technology Edition,2013,35(4):139-144.[陈朝晖,谢一婷,邓勇.涩北气田疏松砂岩气藏微观气水驱替实验[J].西南石油大学学报:自然科学版,2013,35(4):139-144.]
[15]Zhou Keming,Li Ning,Zhang Qingxiu,et al.Experimental reserch on gas water two phase flow and confined gas formation mechanism[J].Nature Gas Industry,2002,22(supplement 1):122-125.[周克明,李宁,张清秀,等.气水两相渗流及封闭气的形成机理实验研究[J].天然气工业,2002,22(增刊1):122-125.]
[16]Gao Shusheng,Liu Huaxun,Ren Dong,et al.Deliverability equation of fracture-cave carbonate reservoirs and its influential factors[J].Nature Gas Industry,2015,35(9):48-54.[高树生,刘华勋,任东,等.缝洞型碳酸盐岩储层产能方程及其影响因素分析[J].天然气工业,2015,35(9):48-54.]
[17]Gao Shusheng,Hu Zhiming,Liu Huaxun,et al.Microscopic pore characteristics of different lithological reservoirs[J].Acta Petrolei Sinica,2016,37(2):248-256.[高树生,胡志明,刘华勋,等.不同岩性储层的微观孔隙特征[J].石油学报,2016,37(2):248-256.]
[18]Chen Huanqing,Cao Chen,Liang Shuxian,et al.Research advances on reservoir pores[J].Natural Gas Geoscience,2013,24(2):227-237.[陈欢庆,曹晨,梁淑贤,等.储层孔隙结构研究进展[J].天然气地球科学,2013,24(2):227-237.]

[1] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[2] 胡勇,李熙喆,万玉金,焦春艳,徐轩,郭长敏,敬伟. 裂缝气藏水侵机理及对开发影响实验研究[J]. 天然气地球科学, 2016, 27(5): 910-917.
[3] 胡勇,徐轩,李进步,王继平,朱秋影,谢坤,石林辉. 砂岩气藏充注含气饱和度实验研究[J]. 天然气地球科学, 2016, 27(11): 1979-1984.
[4] 胡勇,李熙喆,陆家亮,朱华银,郭长敏,朱秋影,焦春燕,刘丽. 关于砂岩气藏储层应力敏感性研究与探讨[J]. 天然气地球科学, 2013, 24(4): 827-831.
[5] 李大奇, 康毅力, 张浩. 基于可视缝宽测量的储层应力敏感性评价新方法[J]. 天然气地球科学, 2011, 22(3): 494-500.
[6] 胡勇, 邵阳, 陆家亮, 张玉丰. 低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J]. 天然气地球科学, 2011, 22(1): 176-181.
[7] 杨学锋, 黄先平, 钟兵, 杜志敏, 张地洪, 郭平. 高含硫气体中元素硫溶解度实验测定及计算方法研究[J]. 天然气地球科学, 2009, 20(3): 416-419.
[8] 王振升;丁一萍;王照华;董萍;赵仕民 . 利用三维可视化技术解释复杂断裂构造[J]. 天然气地球科学, 2008, 19(06): 844-848.
[9] 蔡刚;屈志毅;. 构造复杂地区地震资料速度和成图方法研究与应用[J]. 天然气地球科学, 2005, 16(2): 246-249.
[10] 王卫红,沈平平,马新华,何东博 . 非均质低渗透气藏储层动用能力及影响因素研究[J]. 天然气地球科学, 2005, 16(1): 93-97.
[11] 康晓东,李相方,张国松. 气藏早期水侵识别方法[J]. 天然气地球科学, 2004, 15(6): 637-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[2] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[3] 黄安敏;裴建翔;陈志宏;李绪深;李林;. 油气储层预测技术在琼东南盆地BD13区的应用[J]. 天然气地球科学, 2006, 17(4): 518 -522 .
[4] 胡守志,付晓文,王廷栋,李延均 . 储层中的沥青沉淀带及其对油气勘探的意义[J]. 天然气地球科学, 2007, 18(1): 99 -103 .
[5] 刘春慧;金振奎;朱桂芳;王庆东;张建良. . 准噶尔盆地东部吉木萨尔凹陷二叠系梧桐沟组储层物性特征及控制因素[J]. 天然气地球科学, 2007, 18(3): 375 -379 .
[6] 李士祥;胡明毅;李霞;. 榆林气田山西组2段砂岩成岩作用及孔隙演化[J]. 天然气地球科学, 2005, 16(2): 200 -205 .
[7] 刘文汇;黄第藩;熊传武;徐永昌;. 成烃理论的发展及国外未熟―低熟油气的分布与研究现状[J]. 天然气地球科学, 1999, 10(1-2): 1 -22 .
[8] 张亚光;苏俊青;朱银霞;李宏军;. 千米桥潜山凝析气藏地质特征[J]. 天然气地球科学, 2003, 14(4): 264 -266 .
[9] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .
[10] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .