天然气地球科学

• 非常规天然气 • 上一篇    下一篇

煤层气藏应力—渗流流固耦合模型及SPH求解

孙超群1,2,李术才2,李华銮2,崔伟2,宋曙光2   

  1. 1.山东交通学院交通土建工程学院,山东 济南 250357;
    2.山东大学岩土与结构工程研究中心,山东 济南 250061
  • 收稿日期:2016-01-27 修回日期:2016-12-01 出版日期:2017-02-10 发布日期:2017-02-10
  • 作者简介:孙超群(1986-),男,山东泰安人,讲师,博士,主要从事岩土工程数值算法与模拟研究. E-mail:scq86320@163.com.
  • 基金资助:

    国家重点基础研究发展计划(“973”)项目(编号:2013CB036000);山东交通学院校级基金项目(编号:Z201612)联合资助.

Stress-seepage hydro-mechanical coupling model of coal-bed methane reservoir and its SPH analysis

Sun Chao-qun1,2,Li Shu-cai2,Li Hua-luan2,Cui Wei2,Song Shu-guang2   

  1. 1.School of Civil Engineering,Shandong Jiaotong University,Jinan 250357,China;
    2.Research Center of Geotechnical and Structural Engineering,Shandong University,Jinan 250061,China
  • Received:2016-01-27 Revised:2016-12-01 Online:2017-02-10 Published:2017-02-10

摘要:

数值模拟是研究煤层气渗流的重要手段。将煤层气储层视为双孔双渗的多孔介质,同时考虑煤层的变形对瓦斯渗流的影响,建立煤层气藏应力_渗流流固耦合模型。综合考虑了煤层气的吸附与解吸效应、应力与渗流耦合作用等因素对煤层气开采的影响。采用SPH(Smoothed Particles Hydrodynamics)法求解控制方程,编制计算机程序。利用该模型求解并分析了煤层气的解吸_渗流过程以及煤层渗透率的变化情况。结果表明,SPH方法能够应用于煤层气解吸_渗流过程的数值模拟研究中来;煤层基质渗透率与裂缝渗透率与有效应力变化有密切关系,煤层气的渗透过程需要考虑煤层基质与裂隙受到的变形影响;考虑煤层气的吸附与解吸效应更加符合实际的煤层气渗流过程,能够更合理地估算实际采气过程中瓦斯涌出量。

关键词: 煤层气, 流固耦合, 应力&mdash, 渗流, 解吸, SPH, 双重介质

Abstract:

Numerical simulation is a significantly important method for the dynamic analysis of coal-bed methane reservoir and gas production.This paper proposed a stress-seepage hydro-mechanical model for coal-bed methane reservoir that was considered as dual permeability media of matrix pore and fracture.At the same time,the influence of the deformation of coal-bed on the gas seepage field was considered.The model involved the effects of coal-bed methane’s adsorption and desorption,the coupling of stress-seepage,and other factors on the coal bed methane extraction.SPH (Smoothed Particles Hydrodynamics) method was used to discretize the governing equations,and thus corresponding SPH code was made.A numerical example was presented using the proposed model and field coal bed parameters.The model is used to solve and analyze the process of coal bed methane desorption and the change of permeability.The SPH method can be applied to the study of coalbed methane desorption and seepage process and the dynamic analysis of coalbed gas reservoir.Results show that the matrix permeability and fracture permeability are influenced obviously by effective stress.Considering the adsorption and desorption of coal-bed methane are more realistic in the process of the coal-bed methane seepage,which is needed in the reasonable estimation of the amount of gas emission during the actual gas production process.

Key words: Coal-bed methane, Hydro-mechanical coupling, Stress-seepage, Desorption, Smoothed Particles Hydrodynamics, Dual permeability media

中图分类号: 

  • TE31

[1]Zhou Shining,Lin Baiquan.The Theory of Gas Flow and Storage in Coal Seams[M].Beijing:China Coal Industry Publishing House,1998.[周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1998.]
[2]Zhang Zheng,Qin Yong,Wang G X,et al.Numerical description of coalbed methane desorption stages based on isothermal adsorption experiment[J].Science China:Earth Sciences,2013,56(6):1029-1036.[张政,秦勇,Wang G X,等.基于等温吸附实验的煤层气解吸阶段数值描述[J].中国科学:地球科学,2013,43(8):1352-1358.]
[3]Geng Meng,Chen Hao,Chen Zhenhong,et al.New recognization of CBM enrichment pattern and resource potential in China[J].Natural Gas Geoscience,2016,27(9):1659-1665.[庚勐,陈浩,陈振宏,等.我国煤层气富集规律及资源潜力新认识[J].天然气地球科学,2016,27(9):1659-1665.]
[4]Jin Yi,Song Huibo,Hu Bin,et al.Lattice Boltzmann simulation of fluid flow through coal reservoir’s fractal pore structure[J].Science China:Earth Sciences,2013,56(9):1519-1530.[金毅,宋慧波,胡斌,等.煤储层分形孔隙结构中流体运移格子Boltzmann 模拟[J].中国科学:地球科学,2013,43(12):1984-1995.]
[5]Cheng Yuanping,Liu Hongyong,Guo Pinkun,et al.A theoretical model and evolution characteristic of mining-enhanced permeability in deeper gassy coal seam[J].Journal of China Coal Society,2014,39(8):1650-1658.[程远平,刘洪永,郭品坤,等.深部含瓦斯煤体渗透率演化及卸荷增透理论模型[J].煤炭学报,2014,39(8):1650-1658.]
[6]Yin Guangzhi,Li Guangzhi,Zhao Hongbao,et al.Experimental research on gas flow properties of coal specimens in complete stress-strain process[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(1):170-175.[尹光志,李广治,赵洪宝,等.煤岩全应力_应变过程中瓦斯流动特性试验研究[J].岩石力学与工程学报,2010,29(1):170-175.]
[7]Zhang Zhigang,Cheng Bo.Nonlinear equations of gas seepage in coal considering adsorption effect[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(5):1006-1012.[张志刚,程波.考虑吸附作用的煤层瓦斯非线性渗流数学模型[J].岩石力学与工程学报,2015,34(5):1006-1012.]
[8]Long Qingming,Zhao Xusheng,Sun Dongling,et al.Experimental study on coal permeability by adsorption[J].Journal of China Coal Society,2008,33(9):1030-1034.[隆清明,赵旭生,孙东玲,等.吸附作用对煤的渗透率影响规律实验研究[J].煤炭学报,2008,33(9):1030-1034.]
[9]Zhang Xianmin,Tong Dengke.Nonlinear flow analysis of methane in low permeability coal seams[J].Engineering Mechanics,2010,27(10):219-223.[张先敏,同登科.低渗透煤层气非线性流动分析[J].工程力学,2010,27(10):219-223.]
[10]Cai Yidong,Liu Dameng,Yao Yanbin,et al.Fractal characteristics of coal pores based on classic geometry and thermodynamics models[J].Acta Geologica Sinica:English Edition,2011,85(5):1150-1162.
[11]Connell L D,Lu M,Pan Z.An analytical coal permeability model for tri-axial strain and stress conditions[J].International Journal of Coal Geology,2010,84(2):103-114.
[12]Tao Shizhen,Li Changwei,Huang Chunhu,et al.Migration and accumulation impetus and two-dimension visual physical simulation research of coal-measure tights and stone gas:A case study from tights and stone gas in the Upper Triassic Xujiahe Formation,central Sichuan Basin,China[J].Petroleum Exploration and Development,2016,27(10):1767-1777.[陶士振,李昌伟,黄纯虎,等.煤系致密砂岩气运聚动力与二维可视化物理模拟研究——以川中地区三叠系须家河组致密砂岩气为例[J].天然气地球科学,2016,27(10):1767-1777.]
[13]Liu S,Harpalani S,Pillalamarry M.Laboratory measurement and modeling of coal permeability with continued methane production:Part 2-modeling results[J].Fuel,2012,94:117-124.
[14]Mitra A,Harpalani S,Liu S.Laboratory measurement and modeling of coal permeability with continued methane production:Part 1-laboratory results[J].Fuel,2012,94:110-116.
[15]Pan Z,Connell L D.Modelling permeability for coal reservoirs:A review of analytical models and testing data[J].International Journal of Coal Geology,2012,92:1-44.
[16]Xu H,Sang S,Fang L,et al.Production characteristics and the control factors of surface wells for relieved methane drainage in the Huainan mining area[J].Acta Geologica Sinica:English Edition,2011,85(4):932-941.
[17]Croce G,D Agaro P,Nonino C.Three-dimensional roughness effect on microchannel heat transfer and pressure drop[J].International Journal of Heat and Mass Transfer,2007,50(25):5249-5259.
[18]Teng Guirong,Tan Yunliang,Gao Ming,et al.Simulation of gas drainage in fissured coal based on Lattice Boltzmann Method[J].Journal of China Coal Society,2008,33(8):914-919.[滕桂荣,谭云亮,高明,等.基于LBM方法的裂隙煤体内瓦斯抽放的模拟分析[J].煤炭学报,2008,33(8):914-919.]
[19]Jiang Yongdong,Yang Xingyang,Xiong Ling,et al.Multi-field coupling effect on coalbed methane seepage characteristics and numerical simulation.[J].Journal of Chongqing University,2011,34(4):30-35.[姜永东,阳兴洋,熊令,等.多场耦合作用下煤层气的渗流特性与数值模拟[J].重庆大学学报,2011,34(4):30-35.]
[20]Yang Hongmin,Wei Chenhui,Wang Zhaofeng,et al.Numerical simulation of coal-bed methane displacement by underground gas injection based on multi-physics coupling[J].Journal of China Coal Society,2010,34(S):109-114.[杨宏民,魏晨慧,王兆丰,等.基于多物理场耦合的井下注气驱替煤层甲烷的数值模拟[J].煤炭学报,2010,34(S):109-114.]
[21]Di Junzhen,Liu Jianjun.Numerical simulation based on COMSOL multiphysic to steady and non-equilibrium adsorption-mobilization of coalbed methane[J].China Coalbed Methane,2007,4(3):25-26.[狄军贞,刘建军.基于COMSOL Multiphysic 的煤层甲烷拟稳态吸附-运移数值模拟[J].中国煤层气,2007,4(3):25-26.]
[22]Price H S,McCulloch R C,Edwards J C,et al.A computer model study of methane migration in coal beds[J].The Canadian Mining Metal Bull,1973,66(737):103-112.
[23]Pavone A M,Schwerr F C.Development of Coal Gas Production Simulators and Mathematical Models For Well Test Strategies[R].Final Report under GRI Contract Number 5081-321-0457,1984.
[24]Jalal J,Mohaghegh S D.A coalbed methane reservoir simulator designed and developed for the independent producers[C]//SPE Eastern Regional Meeting.Wetvirginia:Presented at the SPE Eastern Regional Meeting Hold in Charleston,15-17 September,2004.
[25]Liu G R,Liu M B.SmoothedParticle Hydro-Dynamica Meshfree Particle Method[M].New Tersey:World Scientific Publishing Company,2003.
[26]Barenblatt G,Zheltov I P,Kochina I.Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J].Journal of Applied Mathematics and mechanics,1960,24(5):1286-1303.
[27]Shi Juntai,Li Xiangfang,Xu Binxiang,et al.Review on desorption-diffusion-flow model of coal-bed methane[J].Scientia Sinica Physica,Mechanica & Astronomica,2013,43(12):1548-1557.[石军太,李相方,徐兵祥,等.煤层气解吸扩散渗流模型研究进展[J].中国科学:物理学 力学 天文学,2013,43(12):1548-1557.]
[28]Zhou Li,Li Ming,Zhou Yaping.Adsorption measurement and its theorical analysis of supercritical methane on activated carbon with high surface area[J].Science in China:Series B,2000,30(1):49-56.[周理,李明,周亚平.超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J].中国科学:B辑,2000,30(1):49-56.]
[29]He Manchao,Qian Qihu.The Basis of Deep Rock Mechanics[M].Beijing:Science Press,2010.[何满潮,钱七虎.深部岩体力学基础[M].北京:科学出版社,2010.]

[1] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[3] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[4] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[5] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[6] 左罗,蒋廷学,罗莉涛,吴魏,赵昆. 基于渗流新模型分析页岩气流动影响因素及规律[J]. 天然气地球科学, 2018, 29(2): 296-304.
[7] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[8] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[9] 杨文新,李继庆,苟群芳. 四川盆地焦石坝地区页岩吸附特征室内实验[J]. 天然气地球科学, 2017, 28(9): 1350-1355.
[10] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[11] 韩元红,范明,申宝剑,俞凌杰,杨振恒,钱门辉. 富有机质页岩解吸气地球化学特征及其指示意义[J]. 天然气地球科学, 2017, 28(7): 1065-1071.
[12] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[13] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[14] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[15] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!