天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩天然裂缝网络渗透率模型研究

何岩峰,成景烨,窦祥骥,王相,唐波   

  1. 常州大学石油工程学院,江苏 常州 213016
  • 收稿日期:2016-07-01 修回日期:2016-11-16 出版日期:2017-02-10 发布日期:2017-02-10
  • 作者简介:何岩峰(1973-),男,山东东营人,副教授,博士,主要从事采油工程理论与技术方面的教学与科研工作. E-mail:heyanfeng@cczu.edu.cn.
  • 基金资助:

    国家自然科学青年基金“甲烷吸附和碳原子热扩散规律对三维网状石墨烯生长均匀性及其热导率影响的研究”(编号:51506012)资助.

Shale formation natural fracture network permeability model research

He Yan-feng,Cheng Jing-ye,Dou Xiang-ji,Wang Xiang,Tang Bo   

  1. School of Petroleum Engineering in Changzhou University,Changzhou 213016,China
  • Received:2016-07-01 Revised:2016-11-16 Online:2017-02-10 Published:2017-02-10

摘要:

页岩储层天然裂缝网络气体渗透率模型是页岩气开发的研究重点之一。基于Hagen-Poiseulle方程,采用二叉树分形网络模型模拟储层中天然裂缝分布,得到了气体在二叉树分形网络中球面向心流的渗透率模型。分析了矩形、三角形、椭圆形及圆形等不同裂缝截面以及裂缝分叉角θ、裂缝分形维数Df、裂缝毛管长度级差系数α、矩形裂缝截面宽与高的比值x1、椭圆裂缝截面长轴与短轴长度的比值x3等裂缝结构参数对裂缝分形表观渗透率Kf的影响。在相同裂缝截面积的情况下,裂缝分形表观渗透率Kf从大到小依次为圆管模型、椭圆模型、矩形模型和三角形模型。裂缝分形表观渗透率Kf随着裂缝分形维数Df的增大而增大;Kf随着裂缝分叉角θ(0°<θ<100°)的增大先减小后增大,在裂缝分叉角为90°时取得最小值;Kf随着裂缝毛管长度级差系数α的增加而减小;Kf随着矩形裂缝截面宽与高比值x1的增大先增大后减小,在裂缝宽与高比值x1值取1时得到最大值;Kf随着椭圆裂缝截面长轴与短轴长度比值x3的增大而减小。

关键词: 页岩, 天然裂缝网络, 渗透率模型, 分形理论

Abstract:

Gas permeability model of natural fracture network in shale formation is one of the emphases for shale gas development research.In this paper,we adopted fractal binary tree capillary bundle model to simulate natural fracture network in formation,and got gas spherical oriented flow function in binary tree fractal model based on Hagen-Poiseulle equation.We analyzed rectangle,triangle,oval fracture section and facture structure parameters such as fracture bifurcation angle θ,fracture fractal dimension Df,caplillary length coefficient α,rectangle fracture section width-height ratio x1,oval fracture section major axis-minor axis ratio x3 influence on fracture fractal permeability Kf.Fracture fractal permeability Kf sorts by values in descending order is circle tube model,oval section model,rectangle section model,triangle section model.Kf increases as Df increases; Kf shows a non-monotonous behavior with the increase and then decrease of θ and Kf  gets the minimal value when θ equals 90°;Kf decreases as α,x3 increase;Kf increases at first then deceases as rectangle fracture section width-height ratio x1increases and Kf gets maximum value when x1 equals to 1.

Key words: Shale formation, Nature fracture network, Permeability model, Fractal theory

中图分类号: 

  • TE122.2+3

[1]Jiang Ruizhong,Wang Yang,Jia Junfei,et al.The new model for matrix and fracture permeability in shale reservoir[J].Natural Gas Geoscience,2014,25(6):934-939.[姜瑞忠,汪洋,贾俊飞,等.页岩储层基质和裂缝渗透率新模型研究[J].天然气地球科学,2014,25(6):934-939.]
[2]Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
[3]Li Zhifeng,Li Zhiping,Miao Lili,et al.Gas flow characteristics in nanoscale pores of shale gas[J].Natural Gas Geoscience,2013,24(5):1042-1047.[李智锋,李治平,苗丽丽,等.页岩气藏纳米孔隙气体渗流特征分析[J].天然气地球科学,2013,24(5):1042-1047.]
[4]Yang Feng,Ning Zhengfu,Wang Qing,et al.Fractal characteristics of nanopore in shales[J].Natural Gas Geoscience,2014,25(4):618-623.[杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.]
[5]Wang F P,Reed R M,John A.Pore networks and fluid flow in gas shales[C]//SPE Annual Technical Conference and Exhibition.New Orleans,Society of petroleum Engineers,2009.
[6]Wong R C K,Alfaro M C.Fractal dimension analysis of shales using X-ray computer tomography[C]//Internationnal  Workshop  on X-ray CT for Geomaterials Soils.Kumamoto,JP,2004:239-243.
[7]Ma J,Qi H,Wong P Z.Probing the fractal character of pore surfaces in shale with adsorption technique[C]//Symposium on dynamics in Small Confing Systems Ⅳ at the 1998 MRS Fall Meeting,Boston,MA,1998.
[8]Zhang Qinglian,Hou Tinggui,Pan Wenqing,et al.Structural fracture fractal research[J].Journal of Applied Science and Engineering,2011,19(6):853-861.[张庆莲,侯廷贵,潘文庆,等.构造裂缝的分形研究[J].应用基础与工程科学学报,2011,19(6):853-861.]
[9]Lorente S,Bejan A.Heterogeneous porous media as multiscale structures for maximum flow access[J].Journal of Applied Physics,2006,100(11):114909 1-149098.
[10]Tao Jun.Shale Fractal Percolation Model Research[D].Cheng du:Southwest Petroleum University,2014:43-44.[陶军.页岩气分形渗流模型研究[D].成都:西南石油大学,2014:43-44.]
[11]Deng Jia.Nonlinear Seepage Theory of Multistage Fractured Horizontal Wells for Shale Gas Reservoirs[D].Beijing:University of Science and Technology,2015:46-47.[邓佳.页岩储层多级压裂水平井非线性渗流理论研究[D].北京:北京科技大学,2015:46-47.]
[12]Ali Beskok,George Em Karniadakis.A model for flows in Channels,Pipes,and Ducts at Micro and Nano Scales[J].Microscale Thermophysical Engineer-ing,1999,3(1):43-77.
[13]Yu Boming,Cheng Ping.A factal permeability model for bi-dispersed porous media[J].International Journal of Heat and Mass Transfer,2002,45(14):2983-2993.
[14]Zheng Qian,Yu Boming,Wang Shifang,et al.A diffusivity model for gas diffusion through porous media[J].Chemical Engineering Science,2012,68(1):650-655.
[15]Yu Boming,Li Jianhua.Some fractal characters of porous media[J].Fractals,2003,9(3):365-372.
[16]Zhang Jianguo,Lei Guanglun,Zhang Yanyu.Oil and Gas Reservoir Seepage Mechanics[M].Dongying:Petroleum University Press,1998:69-71.[张建国,雷光伦,张艳玉.油气层渗流力学[M].东营:石油大学出版社,1998:69-71.]

[1] 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[9] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 林伯韬,陈渊,陈勉,金衍,蒋峥. 多峰孔径分布拟合模型在页岩孔隙结构分析中的应用[J]. 天然气地球科学, 2018, 29(3): 397-403.
[15] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!