天然气地球科学

• 天然气开发 • 上一篇    下一篇

基于三参数非线性渗流的致密气藏数值试井分析

欧阳伟平1,2,张冕1,刘曰武3,万义钊3,袁冬蕊1,李杉杉1   

  1. 1.中国石油川庆钻探长庆井下技术作业公司,陕西 西安 710018;
    2.中国石油大学(北京)博士后流动站,北京 102249;
    3.中国科学院力学研究所流固耦合系统力学重点实验室,北京 100190
  • 收稿日期:2016-02-26 修回日期:2016-04-01 出版日期:2016-11-10 发布日期:2016-11-10
  • 作者简介:欧阳伟平(1986-),男,江西萍乡人,博士后,主要从事渗流力学与油气井试井研究. E-mail:ouywp56@163.com.
  • 基金资助:
    国家自然科学基金(编号:51404232);国家重大科技专项课题(编号:2011ZX05038-003)联合资助.

Numerical well test analysis of tight gas reservoirs basedon the three parameter nonlinear seepage

Ouyang Wei-ping1,2,Zhang Mian1,Liu Yue-wu3,Wan Yi-zhao3,Yuan Dong-rui1,Li Shan-shan1   

  1. 1.Changqing Downhole Technology Company,Chuanqing Drilling Engineering Co.Ltd.,CNPC,Xi’an 710018,China;
    2.Postdoctoral Research Station,China University of Petroleum (Beijing),Beijing 102249,China;
    3.Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China
  • Received:2016-02-26 Revised:2016-04-01 Online:2016-11-10 Published:2016-11-10

摘要: 目前在低渗透储层的试井模型中,常采用具有平均启动压力梯度的拟线性渗流方程,然而拟线性渗流方程只能反映低渗透流动的启动压力梯度特征,不能描述流动的非线性特征。三参数非线性渗流方程既反映了启动压力梯度特征,也描述了非线性凹形曲线。为了提高致密气藏试井资料的解释精度,完善低渗透非线性试井理论,建立了一种基于三参数非线性渗流方程的致密气藏数值试井模型。利用有限差分方法求解模型,获得了井底压力响应曲线及储层压力分布。分析了压力响应曲线和压力分布特征,对比了三参数非线性模型与拟线性模型的结果,并研究了最小启动压力梯度和平均启动压力梯度的影响。研究结果表明:系统径向流阶段的压力导数曲线偏离0.5线,压降曲线的上翘幅度取决于平均启动压力梯度,压力恢复曲线的上翘幅度取决于平均启动压力梯度与最小启动压力梯度的差值。外边界响应的早晚和动边界扩展速度取决于最小启动压力梯度。

关键词: 致密气藏, 非线性渗流, 数值试井, 最小启动压力梯度, 平均启动压力梯度, 压力响应曲线

Abstract: The well testing models in low permeability reservoir are normally realized by using pseudo-linear flow equation with the average start-up pressure gradient.However,the pseudo-linear flow equation can only reflect the characteristics of start-up pressure gradient in low permeability reservoir.It cannot describe the characteristic of nonlinear flow.The three-parameter nonlinear seepage flow equation not only reflects the characteristics of the starting pressure gradient,also describes the non-linear concave curve.In order to improve the interpretation accuracy of the well test data in tight gas reservoir and perfect the nonlinear well testing theory,this paper presents a nonlinear numerical well testing model based on the three-parameter nonlinear seepage flow equation.With the model,the wellbore pressure response curves and pressure fields were obtained by using finite difference method.The characteristics of pressure response curves and pressure fields were analyzed.Effects of minimum start-up pressure gradient and average start-up pressure gradient on pressure response curves and pressure fields were studied.The results proved that the pressure derivative curves in radial flow phase deviating from the 0.5 line.The upward amplitude of pressure drop curves depends on the average start-up pressure gradient;the upward amplitude of pressure buildup curves depends on the difference between the average start-up pressure gradient and the minimum start-up pressure gradient.Response time of the out boundary depends on the minimum starting pressure gradient.

Key words: Tight gas reservoir, Nonlinear flow, Numerical well test, The minimum start-up pressure gradient, The average start-up pressure gradient, Pressure response curves

中图分类号: 

  • TE37

[1]Ge Jiali.Reservoir Seepage Mechanics[M].Beijing:Petroleum Industry Press,1982:29-31.[葛家理.油气层渗流力学[M].北京:石油工业出版社,1982:29-31.]
[2][KG*5/6]Zhu Weiyao,Song Hongqing,He Dongbo,et al.Low-velocity Non-Darcy gas seepage model and productivity equations of low-permeability water-bearing gas reservoirs[J].Natural Gas Geoscience,2008,19(5):685-689.[朱维耀,宋洪庆,何东博,等.含水低渗气藏低速非达西渗流数学模型及产能方程研究[J].天然气地球科学,2008,19(5):685-689.]
[3]Yan Qinglai,He Qiuxuan,Wei Ligang,et al.A laboratory study on percolation characteristics of single phase flow in low-permeability reservoirs[J].Journal of Xi’an Pertroleum Institute:Nature Science Edition,1990,5(2):1-6.[闫庆来,何秋轩,尉立岗,等.低渗透油层中单相液体渗流特征的实验研究[J].西安石油大学学报:自然科学版,1990,5(2):1-6.]
[4]Huang Yanzhang.Percolation Mechanism in Low Permeability Reservoir[M].Beijing:Petroleum Industry Press,1998.[黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998.]
[5]Ren Xiaojuan,Yan Qinglai,He Qiuxuan,et al.The experimental study of characteristics of gas flow in tight formation[J].Journal of Xi’an Pertroleum Institute:Nature Science Edition,1997,12(3):22-25.[任晓娟,阎庆来,何秋轩,等.低渗气层气体的渗流特征实验研究[J].西安石油学院学报:自然科学版,1997,12(3):22-25.]
[6]He Wei,Feng Xi,Zhong Fuxun.Discussion on the special percolation mechanism of low permeability reservoir and theperformance characteristics of low permeability gas well[J].Natural Gas Industry,2002,22(supplement 1):91-94.[贺伟,冯曦,钟孚勋.低渗储层特殊渗流机理和低渗透气井动态特征探讨[J].天然气工业,2002,22(增刊1):91-94.]
[7]Yang Zhaopeng,Li Xingmin,Liu Shangqi,et al.Threshold pressure effect of low permeability tight gas reservoirs in Sulige Gasfield[J].Acta Petrolei Sinica,2015,36(3):347-354.[杨朝蓬,李星民,刘尚奇,等.苏里格低渗致密气藏阈压效应[J].石油学报,2015,36(3):347-354.]
[8]Huang Yanzhang.Nonlinear percolation feature in low permeability reservoir[J].Special Oil & Gas Reservoirs,1997,4(1):9-14.[黄延章.低渗透油层非线性渗流特征[J].特种油气藏,1997,4(1):9-14.]
[9]Deng Ying’er,Liu Ciqun.Mathematical model of nonlinear flow law in low permeability porous media and its application[J].Acta Petrolei Sinica,2001,22(4):72-77.[邓英尔,刘慈群.低渗油藏非线性渗流规律数学模型及其应用[J].石油学报,2001,22(4):72-77.]
[10]Huang Yanzhang,Yang Zhengming,He Ying,et al.Nonlinear porous flow in low permeability porous media[J].Mechanics in Engineering,2013,35(5):1-8.[黄延章,杨正明,何英,等.低渗透多孔介质中的非线性渗流理论[J].力学与实践,2013,35(5):1-8.]
[11]Cheng Shiqing,Li Yuegang.Numerical solution of well testing model for low-speed non-Darcy flow and its application[J].Natural Gas Industry,1996,16(3):27-30.[程时清,李跃刚.低速非达西渗流试井模型的数值解及其应用[J].天然气工业,1996,16(3):27-30.]
[12]Li Fanhua,Liu Ciqun.Pressure transient analysis for unsteady porous flow with start-up pressure derivative[J].Well Testing,1997,6(1):1-4.[李凡华,刘慈群.含启动压力梯度的不定常渗流的压力动态分析[J].油气井测试,1997,6(1):1-4.]
[13]Liu Yuewu,Ding Zhenhua,He Fengzhen.Three kinds of methods for determining the start-up pressure gradients in low permeability reservoir[J].Well Testing,2002,11(4):1-4.[刘曰武,丁振华,何凤珍.确定低渗透油藏启动压力梯度的三种方法[J].油气井测试,2002,11(4):1-4.]
[14]Liu Qiguo,Yang Xueming,Wei Hongmei,et al.Study of well-test model of low permeability’s dual-pore media with flowing boundary in oil and gas[J].Journal of Southwest Petroleum Institute,2004(5):30-33.[刘启国,杨旭明,魏红梅,等.动边界影响的低渗双重介质油气藏试井解释模型[J].西南石油学院学报,2004(5):30-33.]
[15]Guo Yongcun,Lu Detang,Zeng Qinghong,et al.Mathematical model of fluid flow in porous media related to start-up pressure gradients[J].Journal of University of Science and Technology of China,2005(4):492-498.[郭永存,卢德唐,曾清红,等.有启动压力梯度渗流的数学模型[J].中国科学技术大学学报,2005(4):492-498.]
[16]Zhang Xianmin,Tong Dengke.Nonlinear flow analysis of methane in low permeability coal seams[J].Engineering Mechanics,2010,27(10):219-223.[张先敏,同登科.低渗透煤层气非线性流动分析[J].工程力学,2010,27(10):219-223.]
[17]Wang Xiaodong,Hou Xiaochun,Hao Mingqiang,et al.Pressure transient analysis in low-permeable media with threshold gradients[J].Acta Petrolei Sinica,2011,32(5):847-851.[王晓冬,侯晓春,郝明强,等.低渗透介质有启动压力梯度的不稳态压力分析[J].石油学报,2011,32(5):847-851.]
[18]Yao Jun,Liu Shun.Well test interpretation model based on mutative permeability effects for low- permeability reservoir[J].Acta Petrolei Sinica,2009,30(3):430-433.[姚军,刘顺.基于动态渗透率效应的低渗透油藏试井解释模型[J].石油学报,2009,30(3):430-433.]
[19]Jiang Ruizhong,Li Linkai,Xu Jianchun,et al.A nonlinear mathematical model for low-permeability reservoirs and well-testing analysis[J].Acta Petrolei Sinica,2012,33(2):264-268.[姜瑞忠,李林凯,徐建春,等.低渗透油藏非线性渗流新模型及试井分析[J].石油学报,2012,33(2):264-268.]
[20]Zheng Likun.Establishment of trinomial productivity equation for non-Darcy effect low permeability gas reservoirs[J].Natural Gas Geoscience,2013,24(1):146-149.[郑丽坤.低渗透气藏非达西渗流三项式产能方程的建立[J].天然气地球科学,2013,24(1):146-149.]
[21]Pascal H.Nonsteady flow through porous media in the presence of a threshold gradient[J].Acta Mechanica,1981,39(3/4):207-224.
[22]Liu Ciqun.The approximate solution of solidify with threshold ratio decline[J].Journal of Geotechnical Engineering,1982,4(3):107-109.[刘慈群.有起始比降固结问题的近似解[J].岩土工程学报,1982,4(3):107-109.]

[1] 朱宽亮, 吴晓红, 康毅力, 游利军, 田键, 宋静晗. 致密火山岩气藏水相和油相圈闭损害实验评价——以南堡凹陷5号构造沙河街组为例[J]. 天然气地球科学, 2018, 29(7): 1042-1050.
[2] 吴明涛, 王晓冬, 姚天福. 致密气藏气井非稳态线性渗流特征分析新方法[J]. 天然气地球科学, 2018, 29(7): 1060-1066.
[3] 吕志凯, 贾爱林, 唐海发, 刘群明, 王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[4] 严谨,何佑伟,史云清,郑荣臣,程时清,于海洋,李鼎一. 致密气藏水平井压裂缝不均匀产气试井分析[J]. 天然气地球科学, 2017, 28(6): 839-845.
[5] 田冷,李鸿范,马继翔,谢全,顾岱鸿,任效星. 基于启动压力梯度与应力敏感的致密气藏多层多级渗流模型[J]. 天然气地球科学, 2017, 28(12): 1898-1907.
[6] 丁景辰. 高含水致密气藏水平井稳产原因分析及启示——以鄂尔多斯盆地大牛地气田为例[J]. 天然气地球科学, 2017, 28(1): 127-134.
[7] 位云生,贾爱林,何东博,王军磊. 致密气藏多级压裂水平井产能预测新方法[J]. 天然气地球科学, 2016, 27(6): 1101-1109.
[8] 李波,贾爱林,何东博,李学营. 低渗致密气藏压裂水平井产能预测新方法[J]. 天然气地球科学, 2015, 26(9): 1793-1802.
[9] 莫邵元,何顺利,雷刚,刘广峰,盖少华. 致密气藏气水相对渗透率理论及实验分析[J]. 天然气地球科学, 2015, 26(11): 2149-2154.
[10] 景成,蒲春生,周游,任杨,孙威,张志营. 基于成岩储集相测井响应特征定量评价致密气藏相对优质储层——以SULG东区致密气藏盒8上段成岩储集相为例[J]. 天然气地球科学, 2014, 25(5): 657-664.
[11] 魏明强,段永刚,李彦波,方全堂,姚陆峰. 存在大尺度天然裂缝的气藏数值试井分析方法[J]. 天然气地球科学, 2014, 25(5): 778-782.
[12] 李峰,姜振学,肖中尧,李卓,张莺莺,袁文芳,曹少芳. 塔里木盆地满东1致密气藏成因机制[J]. 天然气地球科学, 2014, 25(10): 1568-1576.
[13] 李琴,陈程,荀小全. 低渗致密气藏压裂水平井产能预测新方法[J]. 天然气地球科学, 2013, 24(3): 633-638.
[14] 位云生,何东博,冀光,唐海发,张军祥. 苏里格型致密砂岩气藏水平井长度优化[J]. 天然气地球科学, 2012, 23(4): 775-779.
[15] 杨磊, 常志强, 朱忠谦, 陈文龙, 廖发明, 王敏瑞. 数值试井在克拉2气田开发中的应用[J]. 天然气地球科学, 2010, 21(1): 163-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘洪军;贾亚妮;李振宏;郑聪斌;. 岩溶盆地中微隆起带的存在及意义――以鄂尔多斯盆地奥陶纪岩溶古地貌为例[J]. 天然气地球科学, 2006, 17(4): 490 -493 .
[2] 李桂菊, 庄新国. 多年冻土区沉积物中甲烷的生成[J]. 天然气地球科学, 2004, 15(5): 516 -518 .
[3] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[4] 黄安敏;裴建翔;陈志宏;李绪深;李林;. 油气储层预测技术在琼东南盆地BD13区的应用[J]. 天然气地球科学, 2006, 17(4): 518 -522 .
[5] 胡守志,付晓文,王廷栋,李延均 . 储层中的沥青沉淀带及其对油气勘探的意义[J]. 天然气地球科学, 2007, 18(1): 99 -103 .
[6] 刘春慧;金振奎;朱桂芳;王庆东;张建良. . 准噶尔盆地东部吉木萨尔凹陷二叠系梧桐沟组储层物性特征及控制因素[J]. 天然气地球科学, 2007, 18(3): 375 -379 .
[7] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[8] 刘文汇;黄第藩;熊传武;徐永昌;. 成烃理论的发展及国外未熟―低熟油气的分布与研究现状[J]. 天然气地球科学, 1999, 10(1-2): 1 -22 .
[9] 张亚光;苏俊青;朱银霞;李宏军;. 千米桥潜山凝析气藏地质特征[J]. 天然气地球科学, 2003, 14(4): 264 -266 .
[10] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .