天然气地球科学

• 天然气地质学 • 上一篇    下一篇

成岩阶段微生物作用及其油气地质意义

王万春1,王成1,2,孙敏卓1,丁万仁1   

  1. 1.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃 兰州 730000;
    2.中国科学院大学,北京 100049
  • 收稿日期:2016-03-17 修回日期:2016-09-21 出版日期:2016-11-10 发布日期:2016-11-10
  • 作者简介:王万春(1962-),女,甘肃民乐人,副研究员,博士,主要从事油气地球化学研究. E-mail:lgas@lzb.ac.cn.
  • 基金资助:
    国家自然科学基金项目(编号:41172132);国家重点基础研究发展规划项目(编号:2012CB214801);甘肃省重点实验室专项(编号:1309RTSA041)联合资助.

Effect of microorganisms during diagenesis and its significance on petroleum formation

Wang Wan-chun1,Wang Cheng1,2,Sun Min-zhuo1,Ding Wan-ren1   

  1. 1.Key Laboratory of Petroleum Resources,Gansu Province/Key Laboratory of Petroleum Resources Research,
    ChineseAcademy of Sciences,Lanzhou 730000,China;2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2016-03-17 Revised:2016-09-21 Online:2016-11-10 Published:2016-11-10

摘要: 成岩阶段微生物发育及其对有机质的改造对于生物甲烷聚集、优质烃源岩形成具有重要意义。在综合近年对沉积成岩过程相关的微生物作用研究的基础上,以柴达木盆地三湖坳陷第四系为例,论述了成岩阶段微生物在生物甲烷生成、有机质富集保存、可溶有机质生成等方面的作用。柴达木盆地三湖坳陷第四系生物标志化合物降解参数与产甲烷菌特征标志物的关系,指示原始沉积有机质降解与甲烷菌发育,是第四系沉积物中生物气聚集的关键因素;与细菌来源生物标志化合物相对丰度的关系,反映成岩阶段微生物发育改变了原始有机质性质;与氯仿沥青“A”转化率以及饱和烃相对丰度的关系,表明微生物发育是第四系沉积物中可溶有机质的重要来源。

关键词: 微生物, 生物降解, 生物标志化合物, 可溶有机质, 柴达木盆地

Abstract: The development of microorganisms in the diagenetic stage and their alteration on organic matter are of great significance for the generation and accumulation of biogenic methane and the formation of high quality hydrocarbon source rocks.Based on the comprehensive study on the effects of microorganisms related to deposition and diagenesis processes in recent years,the role of microorganisms on biogenic methane generation,organic matter enrichment and preservation,and soluble organic matter production during diagenesis were discussed,taking the Quaternary of the Sanhu Depression,Qaidam Basin as an example.The relationships of biodegradation parameters of biomarker compounds with methanogen markers indicates the biodegradation of original sedimentary organic matter and the development of methanogens,which are the key factors for the accumulation of biogenic gas in the Quaternary sediments in the Sanhu Depression,Qaidam Basin.The relationship with the relative abundance of bacterial biomarkers reflects the transformation of the property of original organic matter by microbial development in the diagenetic stage.The relationship with the fractional conversion of the chloroform bitumen “A” and relative abundance of saturated hydrocarbons suggest that the development of microorganisms is an important source of soluble organic matter in the Quaternary sediments.

Key words: Microorganism, Biodegradation, Biomarkers, Dissolved organic matter, Qaidam Basin

中图分类号: 

  • TE122.2\+3

[1]Qi Houfa,Guan Deshi,Qian Yibai,et al.Formation Conditions of Biogenic Gas Accumulations in China[M].Beijing:Petroleum Industry Press,1997:37-45.[戚厚发,关德师,钱贻伯,等.中国生物气成藏条件[M].北京:石油工业出版社,1997:37-45.]
[2]Ding Anna,Lian Liwen,Zhang Hui,et al.Studies on the enriched cultivation of methanogen and the formation experiment by using 1854 to 2608m gas source rocks[J].Acta Sedimentologica Sinica,1995,13(3):117-125.[丁安娜,连立文,张辉,等.1854~2608m气源岩中产甲烷菌的富集培养和发酵产气实验研究[J].沉积学报,1995,13(3):117-125.]
[3]Fan Ben,Yao Suping,Li Shunpeng,et al.Distribution and geological significance of four anaerobic bacteria in peats[J].Geological Journal of China Universities,2007,13(1):30-34.[樊奔,姚素平,李顺鹏,等.泥炭中厌氧细菌的数量分布及其地质意义[J].高校地质学报,2007,13(1):30-34.]
[4]Duque-Botero F,Maurrasse F J-M.Role of cyanobacteria in Corg-rich deposits:An example from the Indidura Formation (Cenomanian-Turonian),northeastern Mexico[J].Cretaceous Research,2008,29(5/6):957-964.
[5]Arndt S,Brumsack H-J,Wirtz K W.Cretaceous black shales as active bioreactors:A biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise) [J].Geochimica et Cosmochimica Acta,2006,70(2):408-425.
[6]Kuypers M M M,Blokker P,Hopmans E C,et al.Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2002,185(1/2):211-234.
[7]Harvey H R,Macko S A.Catalysts or contributors? Tracking bacterial mediation of early diagenesis in the marine water column[J].Organic Geochemistry,1997,26(9/10):531-544.
[8]Katz B J.Controlling Factors on Source Rock Development:A Review of Productivity,Preservation,and Sedimentation Rate[M]//Harris N B (ed),The deposition of organic-carbon-rich sediments:Models,mechanisms,and consequences.Special Publication-Society for Sedimentary Geology,2005,82:7-16.
[9]D’Hondt S,Jrgensen B B,Miller D J ,et al.Distributions of microbial activities in deep subseafloor sediments[J].Science,2004,306:2216-2221.
[10]Krumholz L R,Harris S H,Suflita J M.Anaerobic microbial growth from components of Cretaceous shales[J].Geomicrobiology Journal,2002,19(6):593-602.
[11]Meslé M,Dromart G,Oger P.Microbial methanogenesis in subsurface oil and coal[J].Research in Microbiology,2013,164(9):959-972.
[12]Jones E J P,Voytek M A,Corum M D,et al.Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium[J].Applied Environmental Microbiology,2010,76(21):7013-7022.
[13]Formolo M J,Martini A M,Petsch S T.Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan Basins,U.S.A.[J].International Journal of Coal Geology,2008,76(1/2):86-97.
[14]Ding anna,Hui Rongyao,Xia Yanqing.The formation of type-D bacteridecompamorphinite and its hydrocarbon generation pattern[J].Scientia Geologica Sinica,1997,32(2):221-228.[丁安娜,惠荣耀,夏燕青.D型菌解无定型体的形成及其生烃模式[J].地质科学,1997,32(2):221-228.]
[15]Wang Tieguan,Zhong Ningnig,Hou Dujie,et al.On bacterial role in hydrocarbon generation mechanism,Banqiao Sag[J].Sciencein China:Series B,1995,38(9):1123-1134.
[16]Sun Ping,Guo Zeqing,Zhang Lin,et al.Biogenic gas accumulation mechanism and exploration strategy in Sanhu area,Qaidam Basin[J].Natural Gas Science,2013,24(3):494-504.[孙平,郭清泽,张林,等.柴达木盆地三湖地区生物气成藏机理与勘探对策[J].天然气地球科学,2013,24(3):494-504.]
[17]Zhang Fengmin,Wei Guoqi,Li Jian,et al.Classification and reservoir controlling factors of water dissolved gas in eastern Qaidam Basin[J].Natural Gas Science,2008,19(6):882-887.[张凤敏,魏国齐,李剑,等.柴达木盆地东部水溶性天然气层分类及成藏主控因素分析[J].天然气地球科学,2008,19(6):882-887.]
[18]Ding Anna,Wang Mingming,Li Benliang,et al.Biogas forming mechanism and geochemical characteristics of its source rock[J].Natural Gas Science,2003,14(5):402-407.[丁安娜,王明明,李本亮,等.生物气的形成机理及源岩的地球化学特征—以柴达木盆地生物气为例[J].天然气地球科学,2003,14(5):402-407.]
[19]Mu Yapeng,Wang Wanchun,Song Zhenxiang.Present researches and prospects of the evaluation indicator of biogenic gas source rocks[J].Natural Gas Science,2008,16(9):775-779.[穆亚蓬,王万春,宋振响.生物气源岩评价指标研究现状及展望[J].天然气地球科学,2008,16(9):775-779.]
[20]Shuai Yanhua,Zhang Shuichang,Grasby S E,et al.Controls on biogenic gas formation in the Qaidam Basin,northwestern China[J].Chemical Geology,2013,335:36-47.
[21]Schlegel M E,McIntosh J C,Petsch S T,et al.Extent and limits of biodegradation by in situ methanogenic consortia in shale and formation fluids[J].Applied Geochemistry,2013,28:172-184.
[22]Gao L,Brassell S C,Mastalerz M,et al.Microbial degradation of sedimentary organic matter associated with shale gas and coalbed methane in eastern Illinois Basin (Indiana),USA[J].International Journal of Coal Geology,2013,107:152-164.
[23]Parkes R,Cragg B,Wellsbury P.Recent studies on bacterial populations and processes in sub-seafloor sediments:A review[J].Hydrogeology Journal,2000,8(1):11-28.
[24]D’Hondt S,Rutherford S,Spivack A J.Metabolic activity of subsurface life in deep-sea sediments[J].Science,2002,295:2067-2070.
[25]Fuhrman J A,Sleeter T D,Carlson C A,et al.Dominance of bacterial biomass in the Sargasso Sea and its ecological implications[J].Marine Ecology Progress Series,1989,57:207-217.
[26]Whiteman W,Coleman D,Wiebe W,Prokaryotes:The unseen majority[J].Proceedings of National Academic Sciences of the United States of America,1998,95(9):6578-6583.
[27]Schippers A,Neretin L N,Kallmeyer J.Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria[J].Nature,2005,433(7078):861-864.
[28]Van Dongen B E,Talbot H M,Schouten S,et al.Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area,Tanzania[J].Organic Geochemistry,2006,37(5):539-557.
[29]Hrtner T,Straub K L,Kannenberg E.Occurrence of hopanoid lipids in anaerobic Geobacter species[J].FEMS Microbiology Letters,2005,243(11):59-64.
[30]Sinninghe Damsté J S,Rijpstra W I C,Schouten S,et al.The occurrence of hopanoids in planctomycetes:implications for the sedimentary biomarker record[J].Organic Geochemistry,2004,35(5):561-566.
[31]Thiel V,Blumenberg M,Pape T,et al.Unexpected occurrence of hopanoids at gas seeps in the Black Sea[J].Organic Geochemistry,2003,34(1):81-87.
[32]Kuypers M M M,Blokker P,Erbacher J,et al.Massive expansion of marine Archaea during a Mid-Cretaceous oceanic anoxic event[J].Science,2001,293:92-94.
[33]Blumenberg M,Seifert R,Kasten S,et al.Euphotic zone bacterioplankon sources major sedimentary bacteriohopanepolyols in the Holocene Blanck Sea[J].Geochimica et Cosmochimica Acta,2009a,73(3)750-766.
[34]Blumenberg M,Oppermann B I,Guyoneaud R,et al.Hopanoid production by Desulfovibrio bastinii isolated from oilfield formation water[J].FEMS Microbiology Letters,2009,293(1):73-78.
[35]Cooke M P,Talbot H M,Farrimond P.Bacterial populations recorded in bacteriohopanepolyol distributions in soils from Northern England[J].Organic Geochemistry,2008,39(9):1347-1358.
[36]Eickhoff M,Birgel D,Talbot H M,et al.Diagenetic degradation products of bacteriohopanepolyols produced by Rhodopseudomonas palustris strain TIE-1[J].Organic Geochemistry,2014,68:31-38.
[37]Fischer W W,Summons R E,Pearson A A.Targeted genomic detection of biosynthetic pathways:anaerobic production of hopanoid biomarkers by a common sedimentary microbe [J].Geobiology,2005,3(1):33-40.
[38]Talbot H M,Farrimond P.Bacterial populations recorded in diverse sedimentary biohopanoid distributions[J].Organic Geochemistry,2007,38(8):1212-1225.
[39]Talbot H M,Watson D F,Murrell J C,et al.Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry[J].Journal of Chromatography A,2001,921(2):175-185.
[40]Talbot H M,Summons R E,Jahnke L L,et al.Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings[J].Organic Geochemistry,2008,39(2):232-263.
[41]Taylor k A,Harvey H R.Bacterial hopanoids as tracers of organic carbon sources and processing across the western Arctic continental shelf[J].Organic Geochemistry,2011,42(5):487-497.
[42]van Winden J F,Talbot H M,Kip N,et al.Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss[J].Geochimica et Cosmochimica Acta,2012,77:52-61.
[43]Fang J,Chan O,Joeckel R M.Biomarker analysis of microbial diversity in sediments of a saline groundwater seep of Salt Basin,Nebraska[J].Organic Geochemistry,2006,37(8):912-931.
[44]Jahnke L L ,Embaye T,Hope J,et al.Lipid biomarker and carbon isotopic signatures for stromatoliteforming,microbial mat communities and Phormidium cultures from Yellowstone National Park[J].Geobiology,2004,2(1):31-47.
[45]Coolen M,Cypionka H,Sass A,et al.Ongoing modification of mediterranean pleistocene sapropels mediated by prokaryotes[J].Science,2002,296:2407-2410.
[46]Wu Qingyu,Song Yitao,Sheng Guoying,et al.Study of molecular organic geochemistry on hydrocarbons originated from micro-organisms[J].Science Foundation in China,1997,(2):97-103.[吴庆余,宋一涛,盛国英,等.微生物成烃的分子有机地球化学研究[J].中国科学基金,1997,(2):97-103.]
[47]Zhang Bing,Wu Qingyu,Sheng Guoying,et al.Gas,oil and kerogen-like material generated by pyrolysis of chlorella before and after bacterial degradation[J].Geochimica,1996,25(2):105-111.[章冰,吴庆余,盛国英,等.细菌降解前后小球藻热模拟生成的气、油和类干酪根[J].地球化学,1996,25(2):105-111.]
[48]Ye Yun,Liu Wenhui,Teng Ge’er,et al.Research on cyanobacteria from the Chaohu lake during simulating process of decaying:changes in morphology and organic composition[J].Acta Micropalaeontologica Sinica,2012,29(2):152-160.[叶云,刘文汇,腾格尔,等.巢湖蓝藻腐殖化过程中形态与成分变化研究[J].微体古生物学报,2012,29(2):152-160.]
[49]Grasby S E,Chen Z,Issler D,et al.Evidence for deep anaerobic biodegradation associated with rapid sedimentation and burial in the Beaufort-Machenzie basin,Canada[J].Applied Geochemistry,2009,24(4):536-542.
[50]Orem W H,Voytek M A,Jones E J,et al.Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions[J].Organic Geochemistry,2010,41(9):997-1000.
[51]Wang Ruiliang.Acyclic isoprenoids-molecular indicators of archaeal activity in contemporary and ancient Chinese saline/hypersaline environments[J].Hydrobiologia,1998,381(1):59-76.
[52]Schouten S,van der Maarel M J E C,Huber R,et al.2,6,10,15,19-Pentamethylicosenes in Methanolobus bombayensis,a marine methanogenic archaeon,and in Methanosarcina mazei[J].Organic Geochemistry,1997,26(5/6):409-414.
[53]Thiel V,Peckmann J,Seifert R,et al.Highly isotopically depleted isoprenoids:Molecular markers for ancient methane venting[J].Geochimica et Cosmochimica Acta,1999,63(23/24):3959-3966.
[54]Adam P,Schmid J C,Mycke B,et al.Structural investigation of nonpolar sulfur cross-linked macromolecules in petroleum [J].Geochimica Cosmochimica Acta,1995,57(14):3395-3419.
[55]Brassell S C,Wardroper A M K,Thomson I D,et al.Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments[J].Nature,1981,290(5808):693-696.
[56]Comita P B,Gagosian R B,Pang H,et al.Structural elucidation of a unique macrocyclic membrane lipid from a new,extremely thermophilic,deep-sea hydrothermal vent archaebacterium,Methanococcus jannaschii [J].Journal of Biological Chemistry,1984,259:15234-15241.
[57]Elvert M,Suess E,Whiticar M J.Anaerobic methane oxidation associated with marine gas hydrates:superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids[J].Naturwissenschaften,1999,86(6):295-300.
[58]Hinrichs K-U,Hayes J M,Sylva S P,et al.Methane-consuming archaebacteria in marine sediments[J].Nature,1999,398(6730):802-805.
[59]Hoefs M J L,Schouten S,De Leeuw J W,et al.Ether lipids of planktonic Archaea in the marine water column[J].Applied and Environmental Microbiology,1997,63(8):3090-3095.
[60]Hoffmann-Sell L,Birgel D,Arning E T,et al.Archaeal lipids in Neogene dolomites (Monterey and Sisquoc Formations,California) -Planktic versus benthic archaeal sources[J].Organic Geochemistry,2011,42(6):593-604.
[61]King L L,Pease T K,Wakeham S G.Archaea in Black Sea water particulate matter and sediments-evidence from lipid derivatives[J].Organic Geochemistry,1998,28(11):677-688.
[62]Koga Y,Nishihara M,Morii H,et al.Ether polar lipids of methanogenic bacteria:structures,comparative aspects and biosynthesis[J].Microbiology Reviews,1993,57(1):164-182.
[63]Koga Y,Morii H,Akagawa-Matsushita M,et al.Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens:Further analysis of lipid component parts[J].Bioscience,Biotechnology,and Biochemistry,1998,62(2):230-236.
[64]Pancost R D,Sinninghe Damsté J S,De Lint S,et al.Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria[J].Applied and Environmental Microbiology,2000,66(3):1126-1132.
[65]Tornabene T G,Langworthy T A,Holzer G,et al.Squalenes,phytanes and other isoprenoids as major neutral lipids of methanogenic and thermoacidophilic “archaebacteria”[J].Journal of Molecular Evolution,1979,13(1):73-83.
[66]Schouten S,Hoefs M J L,Koopmans M P,et al.Structural characterization,occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments[J].Organic Geochemistry 1998,29(5-7):1305-1319.
[67]Risatti J B,Rowland S J,Yon D A,et al.Stereochemical studies of acyclic isoprenoids-Ⅻ.Lipids of methanogenic bacteria and possible contributions to sediments[J].Organic Geochemistry,1984,6(1):93-104.
[68]Sinninghe Damsté J S,Schouten S,van Vliet N H,et al.A polyunsaturated irregular acyclic C25 Archaeal lipids in a methanogenic archaeon[J].Tetrahedron Letters,1997,38(39):6881-6884.
[69]Deng Yu,Zhang Hui,Qian Yibai,et al.The composition and distribution of some kinds of anaerobic microorganisms in the Quaternary deposits of east in Qaidam Basin[J].Acta Sedimentologica Sinica,14(Supplement):220-226.[邓宇,张辉,钱贻伯,等.柴达木盆地东部第四系某钻孔沉积物中厌氧细菌的组成与分布[J].沉积学报,1996,14(增刊):220-226.]
[70]Song Zhiguang,Wang Cuiping.The biomarkers of 2,6,10,15,19-pentamethylicosenes and their carbon isotopic composition in the sediments from the Gulf of Mexico[J].Chinese Science Bulletin 2006,51(14):1736-1740.
[71]Brocks J J,Buick B,Summons R E,et al.A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup,Hamersley Basin,Western Australia [J].Geochimica et Cosmochimica Acta,2003,67(22):4321-4335.
[72]Grice K,Schouten S,Nissenbaum A,et al.Isotopically hevy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom Formation,Dead Sea Basin,Israel[J].Organic Geochemistry,1998,28(6):349-359.
[73]Brocks J J,Love G D,Summons R E,et al.Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea [J].Nature,2005,437(7076):866-870
[74]Rohmer M,Bouvier-Navè P,Ourisson G.Distribution of hopanoid triterpenes in prokaryotes[J].Journal of General Microbiology,1984,130(5):1137-1150.
[75]Rohmer M.Hopanoids[C].// Timmis K N.Handbook of Hydrocarbon and Lipid Microbiology.Spring-Verlag Berlin Heidelberg,2010:134-142.
[76]Rosa-Putra S,Nalin R,Domenach A-M,et al.Novel hopanoids from Frankia spp.and related soil bacteria Squalene cyclization and significance of geological biomarker revisited[J].European Journal of Biochemistry,2001,268(15):4300-4306.
[77]Simonin P,Tindall B,Rohmer M.Structure elucidation and biosynthesis of 31-methylhopanoids from Acetobacter europaeus:Studies on a new series of bacterial triterpenoids[J].European Journal of Biochemistry,1994,225(2):765-771.
[78]Simonin P,Jürgens U J,Rohmer M.Bacterial triterpenoids of the hopane series from the prochlorophyte Prochlorothrix hollandica and their intracellular localization[J].European Journal of Biochemistry,1996,241(3):865-871.
[79]Summons R E,Jahnke L L,Hope J M,et al.2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J].Nature,1999,400(6744):554-557.
[80]Zundel M,Rohmer M.Prokaryotic triterpenoids 1:3SymbolbA@-Methylhopanoids from Acetobacter species and Methylococcus capsulatus[J].Europane Journal of Biochemistry,1985,150(11):23-27.
[81]Zhang Ying,Li Jian,Zhang Kui,et al.Organic matter abundance in Quaternary source rocks and its application on assessment of biogenic gas in Sanhu lake area,Qaidam Basin[J].Acta Geologica Sinica,2007,81(12):1716-1722.[张英,李剑,张奎,等.柴达木盆地三湖地区第四系生物气源岩中可溶有机质丰度及地质意义[J].地质学报,2007,81(12):1716-1722.]
[82]Luo Xia,Wang Xue,Li Jian,et al.Application of the Degration degree of organic matter to evaluating the biogas source rock[J].Natural Gas Science,2009,20(6):945-950.[罗霞,王雪,李剑,等.应用有机质降解程度法评价生物气源岩[J].天然气地球科学,2009,20(6):945-950.]
[83]Wang Guocang,Zhang Xiaobao,Meng Qianxiang,et al.Geochemical characteristics of organic matter in low-mature source rocks with microorganisms[J].Natural Gas Science,2009,20(5):768-773.[王国仓,张晓宝,孟仟祥,等.低熟烃源岩有机质在微生物作用下的地球化学特征[J].天然气地球科学,2009,20(5):768-773.]
[84]Shuai Yanhua,Zhang Shuichang,Zhao Wenzhi,et al.Analysis of methanogen membrane lipids and its application to Sanhu Depression,Qaidam Basin[J].Acta Geologica Sinica,2007,81(1):16-22.
[85]Wang Wanchun,Liu Wenhui,Wang Guocang,et al.Biodegradation of depositional organic matter and identification of biogenic gas source rocks:An example from the Sanhu depression of Qaidam Basin[J].Acte Petrolei Sinica,2016,37(3):318-327.[王万春,刘文汇,王国仓,等.沉积有机质微生物降解与生物气气源岩识别——以柴达木盆地三湖坳陷为例[J].石油学报,2016,37(3):318-327.]
[86]Peters K E,Walters C C,Moldowan J M.The Biomarker Guide:Volume Ⅱ Biomarkers and Isotopes in Petroleum Exploration and Earth History[M].United Kingdom:Cambridge University Press,2005:1-680.
[87]Liu Wenhui,Zhang Jianyong,Fan Ming,et al.Gas generation character of dissipated soluble organic matter[J].Petroleum Geology & Experiment,2007,29(1):1-6.[刘文汇,张建勇,范明,等.叠合盆地天然气的重要来源—分散可溶有机质.石油实验地质,2007,29(1):1-6.]
[88]Hollander D J,Smith M A.Microbially mediated carbon cycling as a control on the SymboldA@13C of sedimentary carbon in eutrophic Lake Mendota (USA):New models for interpreting isotopic excursions in the sedimentary record[J].Geochimica et Cosmochimica Acta,2001,65:4321-4337.
[89]Innes H E,Bishop A N,Head I M,et al.Preservation and diagenesis of hopanoids in resent lacustrine sediments of Priest Pot,England[J].Organic Geochemistry,1997,26(9/10):565-576.
[90]Bourgoin L-H,Tremblay L.Bacterial reworking of terrigenous and marine organic matter in estuarine water columns and sediments[J].Geochimica et Cosmochimica Acta,2010,74(19):5593-5609.
[91]Wellsbury P,Herbert R A,Parkes R J.Bacterial activity and production in near-surface estuarine and freshwater sediments[J].FEMS Microbiology Ecology,1996,19(1):203-214.
[92]Parkes R,Cragg B,Getliff J M,et al.A quantitative study of microbial decomposition of biopolymers in recent sediments from the Peru margin[J].Marine Geology,1993,113(1/2):55-66.
[93]Ding Anna,Meng Qianxiang,Cui Mingzhong,et al.Bacterial reworking of organic matter and the formation of immature-low mature fossil oil[J].Natural Gas Science,1999,10(1/2):23-29.[丁安娜,孟仟祥,崔明中,等.微生物改造有机质与未熟_低熟石油的形成[J].天然气地球科学,1999,10(1/2):23-29.]

[1] 龚德瑜, 张越迁, 郭文建, 宋志华, 卢山, 吴卫安. 次生生物甲烷与生物降解作用的判识——以准噶尔盆地腹部陆梁油气田为例[J]. 天然气地球科学, 2019, 30(7): 1006-1017.
[2] 唐友军, 杨易卓, 孟宪新, 王霆, 何大祥, 李梦茹, 季长军, 孙鹏, 蔡意兰. 火山活动对南羌塘盆地曲色组烃源岩地球化学特征影响探讨[J]. 天然气地球科学, 2019, 30(5): 721-728.
[3] 王勇刚, 田彦宽, 詹兆文, 汤睿. 东海盆地西湖凹陷原油中金刚烷类化合物特征及意义[J]. 天然气地球科学, 2019, 30(4): 582-592.
[4] 李延丽, 苟迎春, 马新民, 李程程, 王朴, 陈芳芳. 柴达木盆地坪西地区基岩气藏储层特征[J]. 天然气地球科学, 2019, 30(2): 219-227.
[5] 包建平, 朱翠山, 申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学, 2018, 29(9): 1217-1230.
[6] 曾旭, 李剑, 田继先, 王波, 国建英, 沙威.  柴达木盆地腹部晚期构造带成藏模拟实验研究[J]. 天然气地球科学, 2018, 29(9): 1301-1309.
[7] 周叶骏, 关平, 吴颜雄, 刘沛显, 丁晓楠, 谭宇, 庞磊. 柴达木盆地西部咸水湖相沉积有机质中二苯并噻吩类组成特征及环境意义[J]. 天然气地球科学, 2018, 29(6): 908-920.
[8] 倪新锋,沈安江,韦东晓,乔宇婷,王莹. 碳酸盐岩沉积学研究热点与进展:AAPG百年纪念暨2017年会及展览综述[J]. 天然气地球科学, 2018, 29(5): 729-742.
[9] 王遥平,邹艳荣,史健婷,石军. 化学计量学在油—油和油—源对比中的应用现状及展望[J]. 天然气地球科学, 2018, 29(4): 452-467.
[10] 翟秀芬,汪泽成,罗平,王铜山,石书缘,张洪. 四川盆地高石梯东部地区震旦系灯影组微生物白云岩储层特征及成因[J]. 天然气地球科学, 2017, 28(8): 1199-1210.
[11] 石书缘,刘伟,黄擎宇,王铜山,周慧,王坤,马奎. 塔里木盆地北部震旦系齐格布拉克组白云岩储层特征及成因[J]. 天然气地球科学, 2017, 28(8): 1226-1234.
[12] 包建平,何丹,朱翠山,刘玉瑞,王文军,刘宏宇. 北部湾盆地迈陈凹陷徐闻X3井原油地球化学特征及其成因[J]. 天然气地球科学, 2017, 28(5): 665-676.
[13] 王鹏,沈忠民,何崇康,王君泽,黄飞,潘树林,尹帅. 天然气中丁烷地球化学特征及应用[J]. 天然气地球科学, 2017, 28(4): 529-538.
[14] 杨亚南,周世新,李靖,李成成,李源遽,马瑜,陈克非. 鄂尔多斯盆地南缘延长组烃源岩地球化学特征及油源对比[J]. 天然气地球科学, 2017, 28(4): 550-565.
[15] 黄成刚,关新,倪祥龙,常海燕,张世铭,杨森. 柴达木盆地英西地区E23咸化湖盆白云岩储集层特征及发育主控因素[J]. 天然气地球科学, 2017, 28(2): 219-231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[2] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[3] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[4] 刘春慧;金振奎;朱桂芳;王庆东;张建良. . 准噶尔盆地东部吉木萨尔凹陷二叠系梧桐沟组储层物性特征及控制因素[J]. 天然气地球科学, 2007, 18(3): 375 -379 .
[5] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[6] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .
[7] 朱小燕;孙卫;李建霆;刘宏义;李爱琴;刘一仓;田随良;胡建基 . 陇东城壕—南梁地区长6储层特征研究[J]. 天然气地球科学, 2007, 18(6): 903 -907 .
[8] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[9] 陈凤喜 王勇 张吉 杨勇. 鄂尔多斯盆地苏里格气田盒8气藏开发有利区块优选研究[J]. 天然气地球科学, 2009, 20(1): 94 -99 .
[10] 白斌, 邹才能, 朱如凯, 翟文亮, 刘柳红, 戴朝成, 张健, 杜红权, 毛治国. 利用露头、自然伽玛、岩石地球化学和测井地震一体化综合厘定层序界面——以四川盆地上三叠统须家河组为例[J]. 天然气地球科学, 2010, 21(1): 78 -86 .