天然气地球科学

• 天然气开发 • 上一篇    下一篇

超深裂缝性厚层改造效果影响因素分析与高效改造对策

韩秀玲1,2,杨贤友1,2,熊春明1,2,石阳1,2,高莹1,2,张福祥3,连胜江1,2,李向东1,2,王萌1,2,李福涛1,2   

  1. 1.中国石油勘探开发研究院,北京 100083;
    2.中国石油天然气集团公司采油采气重点实验室,北京 100083;
    3.中国石油塔里木油田股份分公司,新疆 库尔勒 841000
  • 收稿日期:2016-06-03 修回日期:2016-09-10 出版日期:2017-08-10 发布日期:2017-08-10
  • 作者简介:韩秀玲(1984-),女,陕西横山人,工程师,博士,主要从事低渗透储层增产改造技术的理论研究与应用工作. E-mail:hanxiuling@petrochina.com.cn.
  • 基金资助:

    中国石油股份公司重大专项(编号:2014E-32-07)资助.

Influencing factors and efficient reservoir stimulation countermeasuresin thick and ultra-deep naturally fractured reservoir

Han Xiu-ling1,2,Yang Xian-you1,2,Xiong Chun-Ming1,2,Shi Yang1,2,Gao Ying1,2,Zhang Fu-xiang3,Lian Sheng-jiang1,2,Li Xiang-dong1,2,Wang Meng1,2,Li Fu-tao1,2   

  1. 1.Research Institute of Petroleum Exploration & Development,PetroChina,Beijing 100083,China;
    2.Key Laboratory of Oil and Gas Production,China National Petroleum Corporation,Beijing 100083,China;3.Tarim Oilfield Company,PetroChina,Koral 841000,China
  • Received:2016-06-03 Revised:2016-09-10 Online:2017-08-10 Published:2017-08-10

摘要:

针对塔里木油田超深裂缝性厚层改造效果不理想问题,分析确定了影响储层改造效果的主要因素及其影响规律,提出了储层高效改造对策。地质力学研究结果认为影响裂缝开启的因素主要有储层天然裂缝产状、储层地应力、改造时引起的孔隙压力增量、天然裂缝走向与最大主应力方向夹角、裂缝内聚力等。高角度天然裂缝容易发生剪切破坏开启;改造时孔隙压力增量越大、最大最小主地应力差越大,天然裂缝就越易剪切破坏开启;天然裂缝走向与最大主应力方向夹角越小,天然裂缝就越易剪切破坏开启;裂缝内聚力对裂缝开启率的影响较大,降低裂缝内聚力可大幅度增加裂缝开启率,裂缝内聚力从14MPa降低到0MPa,天然裂缝开启率从11.5%增加到71.2%,裂缝开启率增加59.7%。油藏数模研究表明提高储层纵向动用程度比提高储层横向动用程度更有利于提高单井产能。现场通过暂堵和大排量泵注提高井底压力,前置酸酸化降低裂缝内聚力,利于增加天然裂缝的开启率、加入可降解暂堵材料提高储层动用程度、改善增产改造效果,实现了储层高效改造的目的。

关键词: 超深气层, 天然裂缝, 内聚力, 暂堵改造, 裂缝开启

Abstract:

The effect of reservoir stimulation is not ideal for ultra-deep fractured reservoir of Tarim Oilfield Company,so the main factors affecting the reservoir stimulation and influence law of these factors were studied,and the efficient stimulation measures were proposed.Geomechanical studies have shown that the main factors affecting natural fractures opening including natural fracture occurrence,reservoir stress,pore pressure increment caused by the stimulation,the angle between maximum principal stress direction and natural fracture orientation,cohesion and so on.High angle natural fractures are prone to shear failure; the greater the pore pressure increment during stimulation,the greater the stress difference between the maximum and minimum horizontal stress,natural fractures are more easily open by shear failure.The smaller the angle between natural fracture strike and the maximum principal stress direction,the more easily the natural fractures shear failure occurs.Cohesion has a greater impact on natural fractures opening rate,and lower cohesion can greatly increase the natural fractures opening rate.Cohesion drops from 14MPa to 0MPa,natural fractures open rate increases from 11.5% to 71.2%,the crack opening rate increases by 59.7%.Reservoir simulation studies have shown that to improve the longitudinal producing degree is better than lateral producing degree to improve well productivity.By temporarily blocking natural fractures,the higher pump injection to increase bottom hole pressure,and pre-acidification to reduce crack cohesion,the crack opening rate increases,reservoir producing degree and the effect of stimulation are improved greatly.The reservoir stimulation countermeasures are an efficient way to yield higher production in ultra-deep fractured reservoir.

Key words: Ultra-deep reservoir, Natural fractures, Cohesion, Temporary blocking technology, Natural fractures opening

中图分类号: 

  • TE34

[1]Ye Dengsheng,Ren Yong,Guan Bin,et al.Difficultys and strategy of reservoir stimulation on abnormal-high temperature and high pressure wells in the Tarim Basin[J].Natural Gas Industry,2009,29(3):77-79.[叶登胜,任勇,管彬,等.塔里木盆地异常高温高压井储层改造难点及对策[J].天然气工业,2009,29(3):77-79.]
[2]Zou Guoqing,Che Mingguang,Ji Xiaohong,et al.Multistage fracturing technology and application for ultra-high pressure fractured gas reservoir[J].Natural Gas Geoscience,2012,23(2):365-369.[邹国庆,车明光,季晓红,等.超高压裂缝型气藏分层压裂技术及应用[J].天然气地球科学,2012,23(2):365-369.]
[3]Yang Feng,Zhu Chunqi,Wang Xinhai,et al.A capacity prediction model for the low porosity fractured reservoirs in the Kuqa foreland basin,NW China[J].Petrolieum Exploration and Development,2013,40(3):341-345.[杨锋,朱春启,王新海,等.库车前陆盆地低孔裂缝性砂岩产能预测模型[J].石油勘探与开发,2013,40(3):341-345.]
[4]Han Xiuling,Zhou Fujian,Xiong Chunming,et al.A feasibility study on volume fracturing in ultra-deep fractured sandstone gas reservoirs[J].Natural Gas Industry,2013,33(9):60-64.[韩秀玲,周福建,熊春明,等.超深裂缝性砂岩气层体积压裂的可行性分析[J].天然气工业,2013,33(9):60-64.]
[5]Han Xiuling,Xiong Chunming,Zhou Fujian,et al.A new method of fracturing design to improve the stimulated reservoir volume in ultra-deep fractured reservoir[J].Xinjiang  Petroleum  Geology,2013,34(5):567-571.[韩秀玲,熊春明,周福建,等.一种提高超深裂缝型储集层压裂改造体积的新方法[J].新疆石油地质,2013,34(5):567-571.]
[6][KG*7/8]Mark D Zoback.Reservoir Geomechanics[M].The United Kindom:Cambridge University Press,2007.
[7]Zhang Xiugang.All of five wells successful achieve the goal that production more than one million square/day in KESHEN block in Tarim Basin[OL].[2014-3-14].http://www.cnpc/gsxx/gzdt/qyxx/qydt/Pages/2014cd/20140313-C69364.aspx.[张秀刚.塔里木油田克深区块5口井成功实现单井日产量超百万方的目标[OL].[2014-3-14].http://www.cnpc/gsxx/gzdt/qyxx/qydt/Pages/2014cd/20140313-C69364.aspx.]
[8]Wang Fengying.Gas well with high production surfaces again in Keshen block in Tarim Oilfield[OL].[2014-12-4].http://www.cnpc/zhlm/mtksy/Pages/20141204_C316.aspx.[王凤英.塔里木油田克深区块又诞生高产气流井[OL].[2014-12-4].http://www.cnpc/zhlm/mtksy/Pages/20141204_C316.aspx.]
[9]Wang Junpeng,Zhang Ronghu,Zhao Jilong,et al.Charateristics and evaluation of fractures in ultra-deep tight sandstone reservoir:Taking Keshen Gasfield in Tarim Basin,NW China as an example[J].Natural Gas Geoscience,2014,25(11):1735-1745.[王俊鹏,张荣虎,赵继龙,等.超深层致密砂岩储层裂缝定量评价及预测研究——以塔里木盆地克深气田为例[J].天然气地球科学,2014,25(11):1735-1745.]
[10]Mayerhofer M J,Lolon E P,Younblood J E.et al.Integration of microseismic fracture mapping results with numerical fracture network production modeling in the Barnett shale[C]//SPE Annual Technical Conference and Exhibition,Texas,USA:Society of Petroleum Engineers.SPE102103,2006.
[11]Mayerhofer M J,Lolon E P,Warpinski N R,et al.What is Stimulated Reservoir Volume?[C]//SPE Shale Gas Production Conference,Texas,USA:Society of Petroleum Engineers.SPE119890,2008.
[12]Kazemi H.Pressure transient analysis of naturally fractured reservoir with uniform fracture distribution[J].Society of Petroleum Engineers Journal,1969,9(4):451-462.
[13]Thomas L K,Dixon T N,Pierson R G.Fractured Reservoir Simulation[C]//SPE Annual Technical Conference and Exhibition,San Antonio,USA:Society of Petroleum Engineers.SPE9305,42-54,October,1981.
[14]Bastian P R,Chen Z,Helming H J,et al.Numerical Simulation of Multiphase Flow in Fractured Porous Media[J].Springer Berlin Heidelberg,2000,552(1):50-68.
[15]Al-Shaalan T M,Fung L S K,Dogru A H.A Scalable Massively Parallel Dual-Porosity Dual-Permeability Simulator for Fractured Reservoirs with Super-K Permeability[C]//SPE Annual Technical Conference and Exhibition,Denver,USA:Society of Petroleum Engineers.SPE84371,2003.
[16]DaviM T d.Non-Darcy gas flow: From laboratory data to field prediction[C]//SPE Gas Technology Symposium,Alberta,Canada:Society of Petroleum Engineers.SPE26146,1993.
[17]Zheng Bin,Li Juhua.A new fractal permeability model for porous media based on kozeny-carman equation[J].Natural Gas Geoscience,2015,26(1):193-198.[郑斌,李菊花.基于Kozeny-Carman方程的渗透率分形模型[J].天然气地球科学,2015,26(1):193-198.]
[18]Mo Shaoyuan,He Shunli,Lei Gang,et al.Theoretical and experimental analysis of gas-water relative permeability in tight gas[J].Natural Gas Geoscience,2015,26(11):2149-2154.[莫邵元,何顺利,雷刚,等.致密气藏气水相对渗透率理论及实验分析[J].天然气地球科学,2015,26(11):2149-2154.]
[19]Wang Weihong,Liu Chuanxi,Liu Hua,et al.Percolation mechanism and production performance of super high pressure gas reservoir[J].Natural Gas Geoscience,2015,26(4):725-732.[王卫红,刘传喜,刘华,等.超高压气藏渗流机理及气井生产动态特征[J].天然气地球科学,2015,26(4):725-732.]

[1] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
[2] 刘春,张荣虎,张惠良,王波,黄伟. 塔里木盆地库车前陆冲断带不同构造样式裂缝发育规律:证据来自野外构造裂缝露头观测[J]. 天然气地球科学, 2017, 28(1): 52-61.
[3] 王玉满,李新景,董大忠,张晨晨,王淑芳,黄金亮,管全中. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610.
[4] 付海峰,刘云志,梁天成,翁定为,卢拥军,修乃岭. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
[5] 李勇明,廖毅,赵金洲,王琰琛,彭瑀. 基于双尺度等效渗流模型的复杂碳酸盐岩蚓孔扩展形态研究[J]. 天然气地球科学, 2016, 27(1): 121-127.
[6] 焦伟伟,岳锋,程礼军,马勇,刘光明. 渝东南地区下寒武统牛蹄塘组页岩孔隙体系特征[J]. 天然气地球科学, 2015, 26(8): 1587-1595.
[7] 尹国庆,张辉,袁芳,陈胜,李超,赵崴,琚岩,陈培思. 白云岩储层地质力学特征分析及在储层改造优化应用——以塔中东部为例[J]. 天然气地球科学, 2015, 26(7): 1277-1288.
[8] 翁定为,张启汉,卢拥军,梁宏波,付海峰,郑力会. 提高砂岩储层人工裂缝复杂度的压裂技术及其应用[J]. 天然气地球科学, 2014, 25(7): 1085-1089.
[9] 赵金洲,杨海,李勇明,王刚,伍洲. 水力裂缝逼近时天然裂缝稳定性分析[J]. 天然气地球科学, 2014, 25(3): 402-408.
[10] 程远方,徐太双,吴百烈,李娜,袁征,孙元伟,王欣. 煤岩水力压裂裂缝形态实验研究[J]. 天然气地球科学, 2013, 24(1): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!