天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

半开放体系下流体压力对烃源岩HTHP模拟产物产率及镜质体反射率的影响

吴远东1,2,张中宁1,孙丽娜1,2,贺聪1,2,吉利明1,苏龙1,夏燕青1   

  1. 1.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃 兰州 730000;
    2.中国科学院大学,北京 10004
  • 收稿日期:2015-12-14 修回日期:2016-03-08 出版日期:2016-10-10 发布日期:2016-10-10
  • 通讯作者: 张中宁(1964-),男,上海人,副研究员,主要从事石油与天然气地球化学研究. E-mail:ldlab@ns.lzb.ac.cn.
  • 作者简介:吴远东(1989-),男,四川达州人,博士研究生,主要从事石油与天然气地球化学研究. E-mail:wuyuandong123456@163.com.
  • 基金资助:
    国家科技重大专项(编号:2016ZX05007001-004);甘肃省科技计划(编号:1309RTSA041);中国科学院“西部之光”人才培养计划(编号:Y404RC1)联合资助.

Effect of liquids pressure on hydrocarbon yield and RO of source rock HTHP simulation experiment in semi-open system

Wu Yuan-dong1,2,Zhang Zhong-ning1,Sun Li-na1,2,He Cong1,2,Ji Li-ming1,Su Long1,Xia Yan-qing1   

  1. 1.Key Laboratory of Petroleum Resources,Gansu Province/Key Laboratory of Petroleum Resources Research,
    Institute of Geology and Geophysics,Chinese Academy of Sciences,Lanzhou 730000,China;
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2015-12-14 Revised:2016-03-08 Online:2016-10-10 Published:2016-10-10

摘要: 为探究半开放体系中流体压力对烃源岩热演化和成烃过程的影响,利用高温高压(HTHP)模拟仪,在一定半开放体系中,对采自钻孔的泥岩样品进行恒压和增压2个系列的生烃模拟实验。恒压实验中沥青、热解油和气态烃产率高峰分别出现在350℃、450℃和520℃,产率依次为1.82mg/g、4.86mg/g和2.67mL/g,对应镜质体反射率(RO)分别为0.68%、1.72%和3.0%。增压实验中,沥青、热解油和气态烃产率高峰也分别出现在350℃、450℃和520℃,产率依次为0.56mg/g、5.41mg/g和2.61mL/g,对应RO值分别为0.56%、2.42%和2.74%。表明在半开放体系中,流体压力的升高虽不利于沥青形成,但可能会通过促进热解油的形成,从而使总液态烃产率升高。同时,流体压力的升高可能不利于气态烃的形成,会降低气态烃产率。指示在不同的热演化阶段,流体压力对有机质热演化和成烃过程有不同的影响。此外,增压实验中所得残渣总有机碳(TOC)含量均低于恒压实验,表征生烃潜力的相关指标S2IH、H/C也均低于恒压实验,表明高流体压力虽可提高有机质成烃效率,但在促进有机质成油的同时也降低了残渣的生烃潜力。不同热演化阶段流体压力对有机质成熟度的相关指标Tmax值和RO值也有不同影响,热解油大量生成阶段Tmax值、RO值随流体压力升高明显增加。

关键词: 灰色泥岩, 模拟实验, 流体压力, RO, 半开放体系, 残渣, 生烃潜力, 成熟度

Abstract: In order to investigate the process of thermal evolution and hydrocarbon generation of organic matter,mudstone source rock from drilling was pyrolyzed in simulation with con-pressure and hetero-pressure experiments in semi-open system high pressure instrument(HTHP).In con-pressure experiments,peak of bitumen,oil,gaseous hydrocarbon yields appeared at 350℃,450℃ and 520℃ respectively,and yields were,in order,1.82mg/g,4.86mg/g and 2.67mL/g.The corresponding RO of residues were 0.68%,1.72% and 3.0%.In hetero-pressure experiments,peak of bitumen,oil,gaseous hydrocarbon yields appeared at 350℃,450℃ and 520℃ respectively,and yields were,in order,0.56mg/g,5.41mg/g and 2.61mL/g.The corresponding RO of residues were 0.56%,2.42% and 2.74%.Results demonstrate that increasing the fluids pressure might enhance source rocks to yield oil and reduce bitumen,but it might increase liquids yields.At the same time,increasing fluid pressure might reduce the yield of gaseous hydrocarbons,causing the negative influence of gaseous hydrocarbons generation.This phenomenon indicated that fluids pressure had different influences on the thermal evolution and hydrocarbon generation of organic matter in different stage of thermal evolution.Besides,TOC of the residues in hetero-pressure experiments was lower than the residues in con-pressure experiments,the index of generation potential S2IH、H/C had the same variation trend.This demonstrates that the high fluids pressure might reduce the generation potential of residues and enhance the efficiency of organic matters generating hydrocarbons,during it increase liquids yields.Tmax and RO were affected differently by fluids pressure in different stage of thermal evolution,Tmax and RO increased obviously in the stage of organic matter yielding oil rapidly.

Key words: Grey mudstone, Simulation experiment, Fluid pressure, RO, Semi-open condition, Residues, Potential of generation hydrocarbons, Maturity

中图分类号: 

  • TE122.1+13

[1]Waples D W.The kinetics of in-reservoir oil destruction and gas formation:Constraints from experimental and empirical data,and from thermodynamics[J].Organic Geochemistry,2000,31(6):553-575.
[2]Connan J.Time-temperature relation in oil genesis[J].AAPG Bulletin,1974,58(12):2516-2521.
[3]Waples D W.Time and temperature in petroleum formation:Application of Lopatin's method to petroleum exploration[J].AAPG Bulletin,1980,64(6):916-926.
[4]Monthioux M,Landais P,Monin J C.Comparison between natural and artifical maturation series of humic coals from the Mahakam delta,Indonesia[J].Organic Geochemistry,1985,8(4):275-292.
[5]Tao W,Zou Y R,Carr A D,et al.Study of the influence of pressure on enhanced gaseous hydrocarbon yield under high pressure-high temperature coal pyrolysis[J].Fuel,2010,89(11):3590-3597.
[6]Hao F,Li S T,Dong W,et al.Abnormal organic-matter maturation in the Yinggehai Basin,South China Sea:Implications for hydrocarbon expulsion and fluid migration from overpressured systems[J].Journal of Petroleum Geology,2007,21(4):427-444.
[7]Le Bayon R,Brey G P,Ernst W G,et al.Experimental kinetic study of organic matter maturation:time and pressure effects on vitrinite reflectance at 400℃[J].Organic Geochemistry,2011,42(4):340-355.
[8]Zheng Lunju,Qin Jianzhong,He Sheng,et al.Preliminary study of formation porosity thermocopression simulation experiment of hydrocarbon generation and expulusion[J].Petroleum Geology and Experiment,2009,31(3):296-302,306.[郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J].石油实验地质,2009,31(3):296-302,306.]
[9]Zheng Lunju,Ma Zhongliang,Wang Qiang,et al.Quantitative evaluation of hydrocarbon yielding potential of source rock:Application of pyrolysis in finite space[J].Petroleum Geology and Experiment,2011,33(5):452-459.[郑伦举,马中良,王强,等.烃源岩有限空间热解生油气潜力定量评价研究[J].石油实验地质,2011,33(5):452-459.]
[10]Wang Chuanyuan,Du Jianguo,Duan Yi,et al.Evolution characteristics of aromatic hydrocarbons under temperature and pressure in deep lithosphere[J].Science in China:Series D,2007,37(5):644-648.[王传远,杜建国,段毅,等.岩石圈深部温压条件下芳烃的演化特征[J].中国科学:D辑,2007,37(5):644-648.][JP]
[11]Uguna C N,Carr A D,Snape C E,et al.High pressure water pyrolysis of coal to evaluate the role of pressure on hydrocarbon generation and source rock maturation at high maturities under geological conditions[J].Organic Geochemistry,2015,78(1):44-51.
[12]Chen Z H,Ma Z J,Zha M,et al.The effects of high pressure on oil-to-gas cracking during laboratory simulation experiments[J].Journal of Petroleum Geology,2014,37(2):143-162.[JP]
[13]Mi J,Zhang S,He K.Experimental investigations about the effect of pressure on gas generation from coal[J].Organic Geochemistry,2014,74(1):116-122.
[14]Liao Yuhong .The Study on the Mechanism of Generation-Expulsion of Terrestrial Source Rocks[D].Guangzhou:Guangzhou Institute of Geochemistry,2006.[廖玉宏.陆相烃源岩的生排烃机理研究[D].广州:中国科学院广州地球化学研究所,2006.]
[15]Wang Dongliang,Liu Baoquan,Guo Jianying,et al .Simulation test of hydrocarbon generation and expulsion for source rocks of coal-measures in Tarim Basin[J].Oil & Gas Geology,2001,22(1):38-41.[王东良,刘宝泉,国建英,等.塔里木盆地煤系烃源岩生排烃模拟实验[J].石油与天然气地质,2001,22(1):38-41.][JP]
[16]Guo Wei,Yu Wenyang,Liu Zhaojun,et al .The burial history of the southern Songliao Basin[J].Journal of Jilin University:Earth Science Edition,2009,39(3):353-360.[郭巍,于文祥,
刘招君,等.松辽盆地南部埋藏史[J].吉林大学学报:地球科学版,2009,39(3):353-360.]
[17]Behar F,Kressmann S,Rudkiewicz J.L,et al.Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J].Organic Geochemistry,1992,19(1):173-189.
[18]Hedberg H D.Relation of methane g eneration to undercompacted shales,shale diapirs and mud Volcanics[J].AAPG Bulletin,1974,58(4):661- 679.
[19]March J.Advanced Organic Chemistry[M].New York:J Wiley and Sons,1985.
[20]Liu Guangdi,Luo Houfu .Petroleum Geology[M].Beijing:Petroleum Industry Press,2009:134-136.[柳广第,罗厚福.石油地质学[M].北京:石油工业出版社,2009:134-136.]
[21]Teichmüller M.Anwendung kohlenpetrographischer Methoden bei der Erdlund Erdgasprospektion[J].Erdl Kohle,1971,24(1):69-76.
[22]Behar F,Beaumont V,Penteado H L D B.Rock-Eval 6 technology:Performances and developments[J].Oil & Gas Science and Technology,2001,56(2):111-134.
[23]Zheng Lunju,Guan Defan,Guo Xiaowen,et al.Key geology conditions affecting pyrolysis experiments of marine source rocks for hydrocarbon generation[J].Earth Science,2015,40(5):909-917.[郑伦举,关德范,郭小文,等.影响海相烃源岩热解生烃过程的地质条件[J].地球科学,2015,40(5):909-917.]
[24]Xiao Zhihua,Hu Guoyi,Li Zhisheng,et al.An analysis of characteristics of hydrocarbon generation of pyrolysis experiment from source rocks[J].Natural Gas Geoscience,2008,19(4):544-547.[ 肖芝华,胡国艺,李志生,等.从烃源岩热模拟实验讨论其生烃特征[J].天然气地球科学,2008,19(4):544-547.][JP]
[25]Sun Li’na,Zhang Mingfeng,Wu Chengjun,et al.The effect of water medium on the products of different pyrolysis system[J].Natural Gas Geoscience,2015,26(3):524-532.[孙丽娜,张明峰,吴陈君,等.水对不同生烃模拟实验系统产物的影响[J].天然气地球科学,2015,26(3):524-532.]
[26]Wang Zhichao,Mi Jingkui,Li Xianqing,et al.Current situation and problems of simulation experiment approach of hydrocarbon generation[J].Natural Gas Geoscience,2009,20(4):592-597.[王治朝,米敬奎,李贤庆,等.生烃模拟实验方法现状与存在问题[J].天然气地球科学,2009,20(4):592-597.]

[1] 杨娟, 王作栋, 薄海波, 张婷, 吉生军, 王静莹. 下马岭组油页岩热模拟实验抽提物中三芴系列化合物演化特征[J]. 天然气地球科学, 2019, 30(7): 1063-1071.
[2] 王勇刚, 田彦宽, 詹兆文, 汤睿. 东海盆地西湖凹陷原油中金刚烷类化合物特征及意义[J]. 天然气地球科学, 2019, 30(4): 582-592.
[3] 康广星, 徐学敏, 汪双清, 杨佳佳, 孙玮琳, 沈斌, 秦婧, 芦苒, 张小涛, 郭望. 古生界干酪根热演化模拟实验[J]. 天然气地球科学, 2019, 30(4): 593-602.
[4] 彭威龙, 胡国艺, 刘全有, 贾楠, 房忱琛, 龚德瑜, 于聪, 吕玥, 王鹏威, 冯子齐. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学, 2018, 29(9): 1252-1263.
[5] 曾旭, 李剑, 田继先, 王波, 国建英, 沙威.  柴达木盆地腹部晚期构造带成藏模拟实验研究[J]. 天然气地球科学, 2018, 29(9): 1301-1309.
[6] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[7] 段毅,吴应忠,赵阳,曹喜喜,马兰花. 草本沼泽泥炭加水热解产物烃类气体氢同位素特征[J]. 天然气地球科学, 2018, 29(3): 305-310.
[8] 李树同, 姚宜同, 乔华伟, 惠潇, 程党性, 张文选, 牟炜卫. 鄂尔多斯盆地姬塬地区长8致密储层溶蚀作用及其对储层孔隙的定量影响[J]. 天然气地球科学, 2018, 29(12): 1727-1738.
[9] 尹娜, 薛莲花, 姜呈馥, 杨爽, 高潮, 陈国俊. 富有机质页岩生烃阶段孔隙演化及分形特征[J]. 天然气地球科学, 2018, 29(12): 1817-1828.
[10] 陈瑞银, 米敬奎, 陈建平. 煤热压实验成熟度的地质标定[J]. 天然气地球科学, 2018, 29(1): 96-102.
[11] 陈晓艳,田福清,邹华耀,郭柳汐,芦晓伟,殷杰,王道军. 湖相烃源岩热演化生烃研究——基于冀中坳陷烃源岩加水热模拟实验[J]. 天然气地球科学, 2018, 29(1): 103-113.
[12] 王晖,张磊,石军太,张丽霞,高潮,张亮,郭超. 鄂尔多斯盆地东南部山西组泥页岩生烃热模拟实验[J]. 天然气地球科学, 2017, 28(7): 1078-1084.
[13] 纪红,黄光辉,成定树,许姗姗. 塔里木盆地库车坳陷大宛齐—大北地区原油轻烃特征及地球化学意义[J]. 天然气地球科学, 2017, 28(6): 965-974.
[14] 马安来,金之钧,朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学, 2017, 28(2): 313-323.
[15] 罗情勇,郝婧玥,李可文,戴娜,栾进华,程礼军,张志平,胡科,钟宁宁. 重庆地区五峰组—龙马溪组页岩笔石光学特征及其在成熟度评价中的应用[J]. 天然气地球科学, 2017, 28(12): 1855-1863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[2] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[3] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[4] 刘春慧;金振奎;朱桂芳;王庆东;张建良. . 准噶尔盆地东部吉木萨尔凹陷二叠系梧桐沟组储层物性特征及控制因素[J]. 天然气地球科学, 2007, 18(3): 375 -379 .
[5] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[6] 李士祥;胡明毅;李霞;. 榆林气田山西组2段砂岩成岩作用及孔隙演化[J]. 天然气地球科学, 2005, 16(2): 200 -205 .
[7] 张亚光;苏俊青;朱银霞;李宏军;. 千米桥潜山凝析气藏地质特征[J]. 天然气地球科学, 2003, 14(4): 264 -266 .
[8] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[9] 陈凤喜 王勇 张吉 杨勇. 鄂尔多斯盆地苏里格气田盒8气藏开发有利区块优选研究[J]. 天然气地球科学, 2009, 20(1): 94 -99 .
[10] 成永生 陈松岭. 南堡凹陷外围地区古生界地层油气成藏分析[J]. 天然气地球科学, 2009, 20(1): 108 -112 .