天然气地球科学

• 天然气地质学 • 上一篇    下一篇

煤系致密砂岩气运聚动力与二维可视化物理模拟研究——以川中地区三叠系须家河组致密砂岩气为例

陶士振1,李昌伟1,黄纯虎2,曾溅辉3,张响响1,杨春1,高晓辉1,公言杰1   

  1. 1.中国石油勘探开发研究院,北京 100083;
    2.中国石油西南油气田川中油气勘探开发研究所,四川 遂宁 629000;3.中国石油大学(北京),北京 102249
  • 收稿日期:2016-03-31 修回日期:2016-06-19 出版日期:2016-10-10 发布日期:2016-10-10
  • 作者简介:陶士振(1966-),男,回族,安徽颍上人,教授级高级工程师,主要从事油气成藏机理与分布评价研究. E-mail:〖WTBZ〗tsz@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项(编号:2008ZX05001-001;2011ZX05001-001);中国石油科技项目(编号:2014B-0608)联合资助.

Migration and accumulation impetus and two-dimension visual physical simulationresearch of coal-measure tight sandstone gas: A case study from tight sandstone gas in the Upper Triassic Xujiahe Formation,central Sichuan Basin,China

Tao Shi-zhen1,Li Chang-wei1,Huang Chun-hu2,Zeng Jian-hui3,Zhang Xiang-xiang1,Yang Chun1,Gao Xiao-hui1,Gong Yan-jie1   

  1. 1.Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China;
    2.Research Institute of Oil-gas Exploration and Development Attached to Southwest Oil-gas Field Company,
    PetroChina,Suining 629000,China;3.China University of Petroleum,Beijing 102249,China
  • Received:2016-03-31 Revised:2016-06-19 Online:2016-10-10 Published:2016-10-10

摘要: 煤系地层致密砂岩气是中国陆相盆地主要的致密砂岩气类型,这种致密砂岩气源来自煤系烃源岩。中国煤系致密砂岩气以四川盆地须家河组和鄂尔多斯盆地上古生界最为典型。煤系烃源岩呈广覆式分布,大面积生排烃,进入大范围砂体后,天然气运移聚集过程中,砂体的非均质性控制了致密砂岩气局部富集和甜点形成。基于典型气区解剖和地质建模,开展了不同粒径砂与黏土相似材料模拟致密砂岩气运聚机理实验研究,以揭示煤系致密砂岩气充注、运移和聚集规律。实验结果表明,砂体渗透率级差控制天然气聚集的有效性、速率和含气饱和度。当砂体渗透率级差值为2.8时,即砂体非均质性较弱时,砂体内天然气不能有效聚集,而是运移和散失;当砂体的非均质性增强,渗透率级差值增加到5.4时,其中的天然气开始聚集成藏;当砂体非均质性进一步增强,渗透率级差值增加到9.0以上时,砂体内天然气发生大规模的有效聚集和成藏。在气源充足的条件下,大面积非均质性砂体中,物性相对越好的局部砂体,且该局部好砂体中均质性和连通性越好,含气饱和度越高。有断层连通的情况下,砂体的成藏速率增大。致密砂岩气运聚机理研究表明,勘探中应找分流河道、岩屑溶蚀相、断层裂缝和局部构造等部位物性较好的砂体,而其外围被物性较差的砂体或泥岩围限,则有利于天然气有效聚集和保存。

关键词: 煤系致密砂岩气, 煤成气, 运聚动力, 二维模拟实验, 渗透率级差, 运聚机理, 三叠系须家河组, 四川盆地

Abstract: Tight sandstone gas derived from coal-measure source rocks is a major type of gases in China continental basin,which is typically characterized by the Xujiahe Formation of the Sichuan Basin and Upper Paleozoic strata of the Ordos Basin.Coal-measure source rocks expelled hydrocarbon evaporatively.Under the setting of gentle structure,the gas migration-accumulation in tight sandstone is featured by restricted hydrodynamic and buoyance.Hydrocarbon source rock of a wide range of planar evaporative hydrocarbon expulsion,the lower tectonic background,the tight sandbody in the process of gas migration accumulation,heterogeneity of sandbodies control the formation of local enrichment and dessert of tight sandstone gas.The two-dimensional simulation experiment reveals that the range of sand permeability controls the efficiency,speed and gas saturation of the gas migration-accumulation.When the range is 2.8 (the sand heterogeneity is weak),gas in sandstone is characterized by migration and dispersion rather than accumulation; as the heterogeneity becomes obvious and the value increases to 5.4,gas accumulation would be triggered; when the range further increases to more than 9,effective gas accumulation occurs in large-scale.When there is adequate gas,the sands with good reservoir property is featured by high gas saturation.Moreover,connected fault enables faster speed of accumulation.In general,the migration-accumulation mechanisms in tight sandstone gas indicate that,exploration should be focused on sands with good reservoir properties within distributary channel,dissolved cuttings,fault fissure,and local structure.The sands periphery is surrounded by sandstone or mudstone with poor reservoir properties,which thus benefits the gas accumulation and preservation.

Key words: Coal-measure tight sandstone gas, Coal-derived gas, Migration and accumulation impetus, Two-dimensional simulation experiment, Permeability contrast-coefficient, Migration-accumulation mechanisms, Triassic Xujiahe Formation, Sichuan Basin

中图分类号: 

  • TE122.1

[1]Schmoker J W.National assessment report of USA oil and gas resources[DB/CD].Reston:USGS,1995.
[2]Zou Caineng,Tao Shizhen,Yuan Xuanjun,et al.The formation conditions and distribution characteristics of continuous petroleum accumulations[J].Petroleum Exploration and Development,2009,36(3):669-682.[邹才能,陶士振,袁选俊,等.“连续型”油气藏成藏机理,分布特征与评价方法[J].石油勘探与开发,2009,36(3):669-682.]
[3]Zou Caineng,Tao Shizhen,Zhu Rukai,et al.Formation and distribution of “continuous” gas reservoirs and their giant gas province:A case from the Upper Triassic Xujiahe Formation giant gas province,Sichuan Basin[J].Petroleum Exploration and Development,2009,36(3):307-319.[邹才能,陶士振,朱如凯,等.连续型气藏及其大气区形成机制与分布——以四川盆地上三叠统须家河组煤系大气区为例[J].石油勘探与开发,2009,36(3):307-319.]
[4]Zou Caineng,Zhang Guangya,Tao Shizhen,et al.Geological features,major discoveries and unconventional petroleum geology in the global petroleum exploration[J].Petroleum Exploration and Development,2010,37(2):129-145.[邹才能,张光亚,陶士振,等.全球油气勘探领域地质特征、重大发现及非常规石油地质[J].石油勘探与开发,2010,37(2):129-145.]
[5]Dai Jinxing,Xia Xinyu,Wei Yanzhao,et al.Carbon isotope characteristics of natural gas in the Sichuan Basin,China[J].Petroleum Geology & Experiment,2001,23(2):115-121.[戴金星,夏新宇,卫延召,等.四川盆地天然气的碳同位素特征[J].石油实验地质,2001,23(2):115-121.]
[6]Dai Jinxing,Zou Caineng,Tao Shizhen,et al.Formation conditions and main controlling factors of large gasfields in China[J].Natural Gas Geoscience,2007,18(4):473-484.[戴金星,邹才能,陶士振,等.中国大气田形成条件和主控因素[J].天然气地球科学,2007,18(4):473-484.]
[7]Dai Jinxing,Ni Yunyan,Wu Xiaoqi.Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development,2012,39(3):257-264.[戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.]
[8]Masters J A.Deep basin gas trap,western Canada[J].AAPG Bulletin,1979,63(2):152-181.
[9]Rose P R.Possible basin centered gas accumulation,Roton Basin,southern Colorado[J].Oil & Gas Journal,1981,82(10):190-197.
[10]Law B E.Basin-centered gas systems[J].AAPG Bulletin,2002,86(11):1891-1919.
[11]Qiu Zhongjian,Deng Songtao.Strategic position of unconventional natural gas resources in China[J].Natural Gas Industry,2012,32(1):1-5.[邱中建,邓松涛.中国非常规天然气的战略地位[J].天然气工业,2012,32(1):1-5.]
[12]Jia Chengzao,Zou Caineng,Li Jianzhong,et al.Assessment criteria,main types,basic features and resource prospects of the tight oil in China[J].Acta Petrolei Sinica,2012,33(3):343-351.[贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-351.]
[13]Zou Caineng,Tao Shizhen,Hou Lianhua,et al.Unconventional Petroleum Geology[M].Beijing:Petroleum Industry Press,2014:239-273.[邹才能,陶士振,侯连华,等.非常规油气地质学[M].北京:石油工业出版社,2014:239-273.]
[14]Zeng Jianhui.Experiment simulation of impacts of vertical heterogeneity on oil migration and accumulation in fining upwards sands[J].Petroleum Exploration & Development,2000,27(4):102-105.[曾溅辉.正韵律砂层中渗透率级差对石油运移和聚集影响的模拟实验研究[J].石油勘探与开发,2000,27(4):102-105]
[15]Wu Ying,Ning Zhengfu,Yao Yuedong.Non-Darcy flow experiment of low permeability gas reservoir and analysis of influencing factors[J].Journal of Southwest Petroleum Institute,2004,26(4):35-38.[吴英,宁正福,姚约东.低渗气藏非达西渗流实验及影响因素分析[J].西南石油学院学报,2004,26(4):35-38.]
[16]Wu Ying,Cheng Linsong,Ning Zhengfu.New calculation method of Kelinberg constrant and non-Darcy coefficient for low permeable gas reservoirs[J].Natural Gas Industry,天然气工业,2005,25(5):78-81.[吴英,程林松,宁正福.低渗气藏克林肯贝尔常数和非达西系数确定新方法[J].天然气工业,2005,25(5):78-81.]
[17]Zhang Yingzhi,Yang Tiejun,Wang Wenchang,et al.Development Technology Study of Extra-low Permeability Reservoir[M].Beijing:Petroleum Industry Press,1998:1-15.[张英芝,杨铁军,王文昌,等.特低渗透油藏开发技术研究[M].北京:石油工业出版社,1998:1-15.]
[18]Tao Shizhen,Gao Xiaohui,Li Changwei,et al.The experiment simulation study on gas percolation mechanisms of tight sandstone core in coal measure strata:A case study on coal-measure tight sandstone gas in the Upper Triassic Xujiahe Formation,Sichuan Basin,China[J].Natural Gas Geoscience,2016,27(7):1143-1152.[陶士振,高晓辉,李昌伟,等.煤系致密砂岩气渗流机理实验模拟研究——以四川盆地上三叠统须家河组煤系致密砂岩气为例[J].天然气地球科学,2016,27(7):1143-1152.]
[19]Zou Caineng,Tao Shizhen,Gu Zhidong.Formation conditions and distribution rules of large lithologic oil-gas fields with low abundance in China[J].Acta Geologica Sinica,2006,80(11):1739-1751.[邹才能,陶士振,谷志东.中国低丰度大型岩性油气田形成条件和分布规律[J].地质学报,2006,80(11):1739-1751.]
[20]Tao Shizhen,Zou Caineng,Tao Xiaowan,et al.Study on fluid inclusion and gas accumulation mechanism of Xujiahe Formation of Upper Triassic in the central Sichuan Basin[J].Bulletin of Mineralogy,Petrology and Geochemistry,2009,28(1):1-11.[陶士振,邹才能,陶小晚,等.川中须家河组流体包裹体与天然气成藏机理[J].矿物岩石地球化学通报,2009,28(1):1-11.]
[21]Gao C N,An X P,Zhu S J,et al.Changing characteristics of ultralow permeability reservoirs during water flooding operations[J].Petroleum Science,2013,2(2):226-232.
[22]Tong Chongguang.Tectonic Evolution and Petroleum Accumulation of Sichuan Basin[M].Beijing:Geology Publishing House,1992:5-30.[童崇光.四川盆地构造演化与油气聚集[M].北京:地质出版社,1992:5-30.]
[23]Tao Shizhen,Zou Caineng,Gao Xiaohui,et al.Migration dynamic,accumulation mechanism and distribution law of oil and gas in different types[C]//27th Academic Annual Meeting of Chinese Geophysical Society.Changsha,17 October,2011.[陶士振,邹才能,高晓辉,等.不同类型油气运移动力、聚集机理与分布规律[C]//中国地球物理学会第二十七届年会.湖南长沙,2011.]
[24]Liu Deliang,Song Yan,Xue Aimin,et al.Synthetical Study of Tectonic and Gas Accumulation Zone in Sichuan Basin[M].Beijing:Petroleum Industry Press,2000:12-38.[刘德良,宋岩,薛爱民,等.四川盆地构造与天然气聚集区带综合研究[M].北京:石油工业出版社,2000:12-38.]
[25]Tao S Z,Zou C N,Wang Z C,et al.Characteristics of fluid inclusions and its significance to the coaliferous gas reservoirs of the Xujiahe Formation in the central Sichuan Basin,China[J].Energy Exploration & Exploitation,2010,28(4):483-497.
[26]Mark J O,Richard E S.Mechanisms for generating overpressure in sedimentary basins:A reevaluation[J].AAPG Bulletin,2001,85(12):2095-2118.
[27]Zhao Wenzhi,Zou Caineng,Gu Zhidong,et al.Preliminary discussion on accumulation mechanism of sandlens reservoirs[J].Petroleum Exploration & Development,2007,34(3):273-284.[赵文智,邹才能,谷志东,等.砂岩透镜体油气成藏机理初探[J].石油勘探与开发,2007,34(3):273-284.]
[28]Julia S,Peter B F,Ruarri J,et al.Insights into pore-scale controls on mudstone permeability through resedimentation experiments[J].Geology,2011,39(5):1011-1014.
[29]John J.Valenza II,Nicholas D,et al.Geochemical controls on shale microstructure[J].Geology,2013,41(5):611-614.
[30]Yin D Y,Pu H.Numerical simulation study on surfactant flooding for low permeability oilfield in the condition of threshold pressure[J].Journal of Hydrodynamics,2008,20(4):492-498.
[31]Klinkenberg L J.Drilling and Production Practice[M].Washington:American Petroleum Institute,1941:200-213.
[32]Zou C N,Yang Z,Tao S Z,et al.Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum:The Ordos Basin,North-Central China[J].Earth-Science Reviews,2013,126(4):358-369.
[33]Zou C N,Tao S Z,Yang Z,et al.Development of petroleum geology in China:Discussion on continuous petroleum accumulation[J].Journal of Earth Science,2013,24(5):796-803.

[1] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[2] 赵正望, 唐大海, 王小娟, 陈双玲. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
[3] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[4] 戴金星, 洪峰, 倪云燕, 廖凤蓉. 塔里木盆地英吉苏凹陷煤成气前景良好[J]. 天然气地球科学, 2019, 30(6): 771-782.
[5] 秦胜飞, 白斌, 袁苗, 周国晓, 杨晋东. 四川盆地中部地区海相储层煤成气来源[J]. 天然气地球科学, 2019, 30(6): 790-797.
[6] 李勇, 陈世加, 路俊刚, 肖正录, 何清波, 苏恺明, 李俊良. 近源间互式煤系致密砂岩气成藏主控因素——以川中地区须家河组天然气为例[J]. 天然气地球科学, 2019, 30(6): 798-808.
[7] 周国晓, 魏国齐, 胡国艺. 四川盆地龙岗与元坝气田陆相油气系统差异[J]. 天然气地球科学, 2019, 30(6): 809-818.
[8] 卫延召, 宋志华, 奇瑞, 王伟, 龚德瑜, 王峰. 准噶尔盆地陆梁隆起东部滴北凸起天然气成因来源再认识[J]. 天然气地球科学, 2019, 30(6): 840-849.
[9] 胡自龙, 卞保力, 刘海磊, 赵龙, 卢山, 王绍清. 准噶尔盆地大井地区天然气成因、来源与成藏过程[J]. 天然气地球科学, 2019, 30(6): 850-859.
[10] 李剑, 郝爱胜, 齐雪宁, 陈旋, 国建英, 冉启贵, 李志生, 谢增业, 曾旭, 李谨, 王瑀, 刘如红, . 中国西北地区侏罗系煤成气地球化学特征与勘探潜力[J]. 天然气地球科学, 2019, 30(6): 866-879.
[11] 倪云燕, 廖凤蓉, 姚立邈, 高金亮, 张蒂嘉. 川中地区须家河组天然气氢同位素特征及其对水体咸化的指示意义[J]. 天然气地球科学, 2019, 30(6): 880-896.
[12] 郭芪恒, 金振奎, 耿一凯, 赵建华, 常睿, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]. 天然气地球科学, 2019, 30(5): 616-625.
[13] 刘树根, 孙玮, 宋金民, 雍自权, 王浩, 赵聪. 四川盆地中三叠统雷口坡组天然气勘探的关键地质问题[J]. 天然气地球科学, 2019, 30(2): 151-167.
[14] 梁霄, 童明胜, 梁锋, 邓宾, 刘微, 李飞, 马文辛, 刘博文. 晚二叠世盐亭—蓬溪拉张槽东段特征及其对四川盆地中部长兴组油气成藏的控制作用[J]. 天然气地球科学, 2019, 30(2): 176-189.
[15] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 郑军卫. 1991~2000年世界天然气生产一览表(108m3)[J]. 天然气地球科学, 2002, 13(3-4): 73 -81 .
[3] . 缘何说21世纪是天然气时代[J]. 天然气地球科学, 2000, 11(2): 24 .
[4] 李小彦, 解光新. 煤储层吸附时间特征及影响因素[J]. 天然气地球科学, 2003, 14(6): 502 -505 .
[5] 程付启;金强;. 成藏后天然气组分与同位素的分馏效应研究[J]. 天然气地球科学, 2005, 16(4): 522 -525 .
[6] 孙德强;张涛;梁彬;祁文珍;刘健;翟志锋;杨联系;刘志舟;赵凡 . 柴达木盆地北缘油气成藏特征[J]. 天然气地球科学, 2008, 19(05): 652 -656 .
[7] 朱俊章 施和生 汪建蓉 龙祖烈. 珠江口盆地陆相原油轻烃环优势及其成因[J]. 天然气地球科学, 2009, 20(1): 15 -19 .
[8] 付小东 秦建中 腾格尔 王小芳. 固体沥青——反演油气成藏及改造过程的重要标志[J]. 天然气地球科学, 2009, 20(2): 167 -173 .
[9] 林潼, 焦贵浩, 孙平, 王东良, 梁浩, 王志勇. 三塘湖盆地石炭系火山岩储层特征及其影响因素分析[J]. 天然气地球科学, 2009, 20(4): 513 -517 .
[10] 张枫, 董萍, 秦建敏, 李玉江, 邓以清, 易继贵. 低渗透油藏合理井距计算的理论推导及对比研究[J]. 天然气地球科学, 2009, 20(4): 627 -630 .