天然气地球科学

• 非常规天然气 • 上一篇    下一篇

基于改进三线性流模型的多级压裂页岩气井产能影响因素分析

赵金洲,符东宇,李勇明,郭希冉,彭瑀   

  1. 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 收稿日期:2015-07-27 修回日期:2016-03-23 出版日期:2016-07-10 发布日期:2016-07-10
  • 作者简介:赵金洲(1962-),男,湖北仙桃人,教授,博士生导师,主要从事油气藏酸化压裂理论与应用研究和教学工作. E-mail:zhaojz@swpu.edu.cn.
  • 基金资助:
    国家自然科学基金重大项目“页岩地层动态随机裂缝控制机理与无水压裂理论”(编号:51490653);国家“973”项目“中国南方海相页岩气高效开发的基础研究”(编号:2013CB228004)联合资助.

Analysis of sensitive factors about multistage fractured well productivityin shale gas reservoirs based on modified trilinear flow model

Zhao Jin-zhou, Fu Dong-yu,Li Yong-ming,Guo Xi-ran,Peng Yu   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
  • Received:2015-07-27 Revised:2016-03-23 Online:2016-07-10 Published:2016-07-10

摘要: 页岩气多级压裂形成的复杂裂缝网络会改变其原有的气体渗流模式,形成多个独有的流动阶段。因此,常规的产能模型不能有效模拟其压力、流量变化规律。为了增加页岩气产能模拟精度和对压裂施工优化做出指导,在耦合三线性渗流和球形双重介质渗流模型的基础上,考虑解吸和滑脱等机理,建立了改进的三线性流产能预测模型,并进行了解析求解和数值反演。计算结果表明,页岩气的解吸对提高单井产能,延长稳产期具有重要意义;储层中的微裂缝能够通过控制气体在基质与人工裂缝之间的窜流最终影响页岩气井产能;人工裂缝导流能力对页岩气井产能的影响覆盖了整个生产周期的中前段,然而随着人工裂缝导流能力的增加,产能的增长幅度变缓,证明了页岩气藏不需追求高导流能力裂缝的理论,缝间距主要影响线性流时间的长短;汇聚效应在投产初期对产能具有不可忽视的影响。研究结果对于深化页岩气井生产动态认识和提高页岩气藏开发效率具有重要意义。

关键词: 页岩气, 多级压裂, 解吸, 微裂缝, 产能, 敏感性分析

Abstract: The complex fracture networks of multistage fractured shale gas reservoir would change the original gas flow regime,leading to some unique mobile phases.Therefore,the conventional flow models cannot effectively simulate the pressure and flux discipline.In order to improve the accuracy of production simulation and make guidance for the fracturing treatment,coupling the trilinear flow model and spherical dual-medium seepage model,the modified trilinear flow model considering the mechanism of desorption and slippage has been developed.According to the analytical solutions and numerical inversion of the model,the shale gas desorption could enhance the gas production and extend the production plateau.The microfracture in the reservoir could make great impact on the gas production by controlling the crossflow between hydraulic fractures and matrix.The hydraulic fracture conductivity could influence the productivity in the whole front-end production cycle.However,the production growth becomes slower with the increase of fracture conductivity.That is to say,the theory that to acquire high conductivity fractures in shale gas reservoirs is unessential.Furthermore,fracture spacing has great impact on increasing the length of time in linear flow regime.Convergence effect has a considerable impact at the beginning of the production cycle.The results in this paper could have further influence on the production performance and improve the efficiency in shale gas exploitation.

Key words: Shale gas, Multistage fracturing, Desorption, Microfracture, Productivity, Sensitive analysis

中图分类号: 

  • TE33+2

[1]Zheng Junwei,Sun Deqiang,Li Xiaoyan,et al.Advances in exploration and exploitation technologies of shale gas[J].Natural Gas Geoscience,2011,22(3):511-517.[郑军卫,孙德强,李小燕,等.页岩气勘探开发技术进展[J].天然气地球科学,2011,22(3):511-517.]
[2]Wang Weifeng,Liu Peng,Chen chen,et al.The study of shale gas reservoir theory and resources evaluation[J].Natural Gas Geoscience,2013,24(3):429-438.[王伟锋,刘鹏,陈晨,等.页岩气成藏理论及资源评价方法[J].天然气地球科学,2013,24(3):429-438.]
[3]Qiu Zhongjian,Deng Songtao.Strategic position of unconventional natural gas resources in China[J].Natural Gas Industry,2012,32(1):1-5.[邱中建,邓松涛.中国非常规天然气的战略地位[J].天然气工业,2012,32(1):1-5.]
[4]Jiang Huaiyou,Ju Binshan,Li Zhiping,et al.A study on the world’s shale gas resources today[J].Sino-Global Energy,2014,19(3):14-22.[江怀友,鞠斌山,李治平,等.世界页岩气资源现状研究[J].中外能源,2014,19(3):14-22.]
[5]Yao Tongyu,Huang Yanzhang,Li Jishan.Flow regim for shale gas in extra low permeability porous media[J].Chinese Journal of Theoretical and Applied Mechanics,2012,44(6):990-995.[姚同玉,黄延章,李继山.页岩气在超低渗介质中的渗流行为[J].力学学报,2012,44(6):990-995.]
[6]Brown M L,Ozkan E,Raghavan R S,et al.Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs[J].SPE Reservoir Evaluation & Engineering,2009,14(6):663-676.
[7]Zhang Liehui,GuoJingjing,Liu Qiguo.A new well test model for a two-zone linear compositereservoir with varied thickness[J].Journal of Hydroynamics,2010,22(6):804 -809.
[8]Yao Jun,Yin Xiuxing,Fan Dongyan,et al.Trilinear-flow well test model of fractured horizontal well in low permeability reservoir[J].Well Testing,2011,5(20):1-5.[姚军,殷修杏,樊冬艳,等.低渗透油藏的压裂水平井三线流试井模型[J].油气井测试,2011,5(20):1-5.]
[9]Stalgorova E,Mattar L.Analytical model for history matching and forecasting production in multifrac composite systems[C]//SPE Canadian Unconventional Resources Conference.Society of Petroleum Engineers,2012.
[10]Brohi I G,Pooladi-Darvish M,Aguilera R.Modeling fractured horizontal wells as dual porosity composite reservoirs-application to tight gas,shale gas and tight oil cases[C]//SPE Western North American Region Meeting.Society of Petroleum Engineers,2011.
[11]Sang Y,Chen H,Yang S,et al.A new mathematical model considering adsorption and desorption process for productivity prediction of volume fractured horizontal wells in shale gas reservoirs[J].Journal of Natural Gas Science and Engineering,2014,19(7):228-236.
[12]Tian L,Xiao C,Liu M,et al.Well testing model for multi-fractured horizontal well for shale gas reservoirs with consideration of dual diffusion in matrix[J].Journal of Natural Gas Science and Engineering,2014,21(1):283-295.
[13]Huang T,Guo X,Chen F.Modeling transient pressure behavior of a fractured well for shale gas reservoirs based on the properties of nanopores[J].Journal of Natural Gas Science and Engineering,2015,23(1):387-398.
[14]Wang Rui,Zhang Ningsheng,Liu Xiaojuan,et al.Adsorption influence factors and characteristics of adsorption isotherm curve for shale to methane[J].Natural Gas Geosceince,2015,26(3):580-591.[王瑞,张宁生,刘晓娟,等.页岩对甲烷的吸附影响因素及吸附曲线特征[J].天然气地球科学,2015,26(3):580-591.]
[15]Sheng Mao,Li Gensheng,Huang Zhongwei,et al.Shale gas flow model with effects of surface diffusion[J].Acta Petrolei Sinica,2014,35(2):347-352.[盛茂,李根生,黄中伟,等.考虑表面扩散作用的页岩气瞬态流动模型[J].石油学报,2014,35(2):347-352.]
[16]Guo J,Zhang L,Wang H,et al.Pressure transient analysis for multi-stage fractured horizontal wells in shale gas reservoirs[J].Transport in Porous Media,2012,93(3):635-653.
[17]Mukherjee H,Economides M J.A parametric comparison of horizontal and vertical well performance[J].SPE Formation Evaluation,1991,6(2):209-216.
[18]Nie R S,Meng Y F,Jia Y L,et al.Dual porosity and dual permeability modeling of horizontal well in naturally fractured reservoir[J].Transport in Porous Media,2012,92(1):213-235.
[19]Tong Dengke,Chen Qinlei.A note about stehfest Laplace numerical inversion method[J].Acta Petrolei Sinica,2001,22(6):91-92.[同登科,陈钦雷.关于Laplace数值反演Stehfest方法的一点注记[J].石油学报,2001,22(6):91-92.]
[20]Bazan L W,Larkin S D,Lattibeaudiere M G,et al.Improving Production in the Eagle Ford Shale with Fracture Modeling,Increased Fracture Conductivity and Optimized Stage and Cluster Spacing Along the Horizontal Wellbore[C]//Tight Gas Completions Conference.Society of Petroleum Engineers,2010.

[1] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[2] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[3] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[4] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[5] 黄小青, 王建君, 杜悦, 李林, 张卓. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨[J]. 天然气地球科学, 2019, 30(4): 557-565.
[6] 姜瑞忠, 张福蕾, 郜益华, 崔永正, 沈泽阳, 原建伟. 三重介质压裂气藏椭圆流非稳态产能模型[J]. 天然气地球科学, 2019, 30(3): 370-378.
[7] 张辉, 尹国庆, 王海应. 塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J]. 天然气地球科学, 2019, 30(3): 379-388.
[8] 曾凡辉, 彭凡, 郭建春, 钟华, 向建华. 考虑页岩缝宽动态变化的微裂缝气体质量传输模型[J]. 天然气地球科学, 2019, 30(2): 237-246.
[9] 张磊, 徐兵祥, 辛翠平, 乔向阳, 穆景福, 许阳, 韩长春. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256.
[10] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[11] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[12] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[13] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[14] 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110.
[15] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 王晓锋;刘文汇;刘全有;张殿伟;南青云;. 有机体及其沉积演化产物的氢同位素地球化学研究进展[J]. 天然气地球科学, 2004, 15(3): 311 -316 .
[3] 王宏波, 郑希民,冯 明. 鄂尔多斯盆地三叠系延长组层序地层与生储盖组合特征[J]. 天然气地球科学, 2006, 17(5): 677 -681 .
[4] 胡 斌,李广之,吴向华,邓天龙 . 岩屑荧光录井技术及荧光指标量化方法[J]. 天然气地球科学, 2007, 18(1): 121 -124 .
[5] 任以发;. 黄桥二氧化碳气田成藏特征与进一步勘探方向[J]. 天然气地球科学, 2005, 16(5): 632 -636 .
[6] 李小彦, 解光新. 煤储层吸附时间特征及影响因素[J]. 天然气地球科学, 2003, 14(6): 502 -505 .
[7] 赵靖舟. 论幕式成藏[J]. 天然气地球科学, 2005, 16(4): 469 -476 .
[8] 程付启;金强;. 成藏后天然气组分与同位素的分馏效应研究[J]. 天然气地球科学, 2005, 16(4): 522 -525 .
[9] 钱诗友;曾溅辉;林会喜;孙锡文 . 辽东东地区石油运移和聚集物理模拟实验及机理分析[J]. 天然气地球科学, 2008, 19(05): 604 -610 .
[10] 晋香兰;张泓. 鄂尔多斯盆地延安组煤层对常规天然气的贡献率研究[J]. 天然气地球科学, 2008, 19(05): 662 -664 .