天然气地球科学

• 天然气开发 • 上一篇    下一篇

裂缝性致密储层应力敏感机理新认识

张睿1,2,宁正福1,2,张海山3,谢佥1,4   

  1. 1.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
    2.中国石油大学(北京)石油工程教育部重点实验室,北京 102249;
    3.大港油田第一采油厂,天津 300280;
    4.中国石油大学(北京)CNPC物探重点实验室,北京 102249
  • 收稿日期:2015-09-10 修回日期:2015-10-28 出版日期:2016-05-10 发布日期:2016-05-10
  • 作者简介:张睿 (1986-),男,新疆昌吉人,博士研究生,主要从事非常规油气渗流及实验研究. E-mail:vvvbst2005@163.com.
  • 基金资助:
    国家自然科学基金项目(编号:51474222);高等学校博士学科点专项科研基金(编号:20120007110012;20130007120013);中国石油大学(北京)科研基金资助(编号:YJRC-2013-05)联合资助.

New insights and discussions on stress sensitivity of fractured tight reservoir

Zhang Rui1,2,Ning Zheng-fu1,2,Zhang Hai-shan3,Xie Qian1,4   

  1. 1.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China;
    2.Key Laboratory of Petroleum Engineering of the Ministry of Education,China University of Petroleum,Beijing 102249;
    3.No.1 Oil Production Plant,Dagang Oilfield Company,PetroChina,Tianjin 300280,China;
    4.CNPC Key Laboratory of Geophysical Exploration,China University of Petroleum,Beijing 102249,China
  • Received:2015-09-10 Revised:2015-10-28 Online:2016-05-10 Published:2016-05-10

摘要: 目前关于裂缝性致密储层应力敏感机理及模型应用的认识存在较大争议。从Walsh模型的物理意义出发,以Walsh模型与幂律公式数学关系的内在联系为基础,探讨了幂律公式适用性及其常系数的物理意义,并用实验进行了验证,最后基于5种不同孔隙类型将所适用的应力敏感公式进行了分类。结果表明:Walsh模型对裂缝性致密储层的拟合结果较好,但不适用于孔隙型与裂缝型高孔高渗储层。考虑裂缝面粗糙度时,裂缝性致密储层应力敏感可用Walsh模型和幂律公式进行描述。通过数学变换可知Walsh模型和幂律公式具有等效性,幂律公式中常系数项具有物理意义,即常系数项为裂缝面粗糙度项与迂曲项的乘积,裂缝面越粗糙,迂曲度越高,应力敏感越强。基于孔隙类型的应力敏感公式分类结果表明考虑裂缝粗糙度时,裂缝性致密储层与微裂隙型储层适用幂律公式进行描述;孔隙型与裂缝型高孔高渗储层适用指数公式进行描述。

关键词: 应力敏感, Walsh模型, 幂律公式, 指数公式, 裂缝粗糙度

Abstract: The current insights in the applicability of stress dependent permeability and mathematical model to fracture tight reservoirs are still a controversial issue.In this paper,based on the physical meaning of Walsh model,the mathematical relationship between Walsh model and power law formula was investigated and the physical meaning of power law coefficient was analyzed and elaborated,and then the stress sensitivity tests on rock samples were conducted.Finally,the applicability of stress dependent permeability formulas was classified according to five pore types.The results show that the best regression fitting occurred in fractured tight reservoir rather than high porosity/permeability reservoir or no crack reservoir using Walsh model.Considering fracture roughness,Walsh model and power law formula are mathematically equivalent.The power law coefficient is the product of fracture “aperture term” and “tortuosity term”.The strong stress sensitivity corresponds to high fracture roughness and tortuosity.Consequently,classification result show that power law formula apply to fractured tight reservoir and microcrack reservoir,exponential formula apply to high porosity/permeability reservoir or no crack reservoir.

Key words: Stress sensitivity, Walsh model, Power law equation, Exponential equation, Fracture roughness

中图分类号: 

  • TE312

[1]Xu Hongjun,Fan Mingguo,Kang Zheng,et al.A productivity prediction equation considering rock permeability stress-sensitivity in low-permeability gas reservoirs[J].Natural Gas Geoscience,2008,19(1):145-147.[胥洪俊,范明国,康征,等.考虑渗透率应力敏感的低渗气藏产能预测公式[J].天然气地球科学,2008,19(1):145-147.]
[2]Ai Shuang,Cheng Linsong,Huang Shijun,et al.Transient production forecasting model of multiply fractured horizontal wells in shale gas reservoirs[J].Natural Gas Geoscience,2014,25(10):1661-1667.[艾爽,程林松,黄世军,等.页岩气体积压裂水平井非稳态产能评价模型[J].天然气地球科学,2014,25(10):1661-1667.]
[3]Jones F O.A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks[J].Journal of Petroleum Technolog,1975,27(1):21-27.
[4]Walsh J B.Effect of pore pressure and confining pressure on fracture permeability()[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(5):429-435.
[5]Gangi A.Variation of whole and fractured porous rock permeability with confining pressure[J].International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1978,15(5):249-257.
[6]McKee C R,Bumb A C,Koenig R A.Stress-dependent permeability and porosity of coal and other geologic formations[J].SPE Formation Evaluation,1988,3(1):81-91.
[7]Dong J J,Hsu J Y,Wu W J,et al.Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A[J].International Journal of Rock Mechanics and Mining Sciences,2010,47(7):1141-1157.
[8]Ruan Min,Wang Liangang.Low-permeability oilfield development and pressure-sensitive effect[J].Acta Petrolei Sinica,2002,23(3):73-76.[阮敏,王连刚.低渗透油田开发与压敏效应[J],石油学报,2002,23(3):73-76.]
[9]Luo Ruilan,Cheng Linsong,Li Xizhe,et al.The deformation characteristics of low permeability reservoir rocks under confining pressure[J].Natural Gas Industry,2009,29(9):46-49.[罗瑞兰,程林松,李熙喆,等.低渗透储层岩石覆压实验变形特征分析[J].天然气工业,2009,29(9):46-49.]
[10]Luo Ruilan,Feng Jinde,Tang Minglong,et al.probe into evaluation methods for stress sensitivity of low permeability reservoir[J].Journal of Southwest Petroleum University:Science& Technology Edition,2008,30(5):161-164.[罗瑞兰,冯金德,唐明龙,等.低渗储层应力敏感评价方法探讨[J].西南石油大学学报:自然科学版,2008,30(5):161-164.]
[11]Luo Ruilan,Cheng Linsong,Peng Jianchun,et al.A new method of determining relationship between permeability and effective overburden pressure for low-permeability reservoirs[J].Journal of China University of Petroleum:Science& Technology Edition,2007,31(2):87-90.[罗瑞兰,程林松,彭建春,等.确定低渗岩心渗透率随有效覆压变化关系的新方法[J].中国石油大学学报:自然科学版,2007,31(2):87-90.]
[12]Yang Zhaopeng,Gao Shusheng,Guo Lihui,et al.Effect of stress sensitivity on well productivity in tight gas reservoir[J].Drilling & Production Technology,2013,36(2):58-61.[杨朝蓬,高树生,郭立辉,等.致密砂岩气藏应力敏感性及其对产能的影响[J].钻采工艺,2013,36(2):58-61.]
[13]Wen Weiming,Zhu Shaopeng,Li Mao.Stress sensitivity features and productivity equations of offshore abnormal high-pressure gas reservoirs:A case study from the Yinggehai Basin[J].Natural Gas Industry,2014,34(9):59-63.[温伟明,朱绍鹏,李茂.海上异常高压气藏应力敏感特征及产能方程——以莺歌海盆地为例[J].天然气工业,2014,34(9):59-63.]
[14]Kassis S M,Sondergeld C H.Gas Shale Permeability: Effects of Roughness,Proppant,Fracture Offset,and Confining Pressure[C].International Oil and Gas Conference and Exhibition in China,8-10 June,Beijing,China.SPE131376.2010.
[15]Xue Yongchao,Cheng Linsong.Experimental comparison study on stress sensitivity of different permeability cores[J].Oil Drilling & Production Technology,2011,33(3):38-41.[薛永超,程林松.不同级别渗透率岩心应力敏感实验对比研究[J].石油钻采工艺,2011,33(3):38-41.]
[16]Wang Liqiang,Liu Huiqing,Zhen Siguang,et al.Quantitative research on stress sensitivity of low-permeability reservoir[J].Acta Petrolei Sinica,2009,30(1):96-99.[王厉强,刘慧卿,甄思广,等.低渗透储层应力敏感性定量解释研究[J].石油学报,2009,30(1):96-99.]
[17]Bernabe Y.The effective pressure law for permeability in Chelmsford granite and Barre granite[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1986,23(3): 267-275.
[18]Wang Yang,Xu Wei,Li He,et al.Production performance of T1j2 gas reservoir in Moxi Gasfield[J].Natural Gas Industry,2007,27(9):71-74.[王阳,徐伟,李和,等.磨溪气田嘉二段气藏产能特征[J].天然气工业,2007,27(9):71-74.]
[19]Qin Jishun,Li Aifen.Petro-Physics[M].Dongying: China University of Petroleum Press,2003.[秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2003.]

[1] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[2] 程鸣, 傅雪海, 张苗, 程维平, 渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[4] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[5] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[6] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[7] 田冷,李鸿范,马继翔,谢全,顾岱鸿,任效星. 基于启动压力梯度与应力敏感的致密气藏多层多级渗流模型[J]. 天然气地球科学, 2017, 28(12): 1898-1907.
[8] 朱维耀, 马东旭, 朱华银, 安来志, 李兵兵. 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学, 2016, 27(5): 892-897.
[9] 王卫红,刘传喜,刘华,穆林,伦增珉,郭艳东. 超高压气藏渗流机理及气井生产动态特征[J]. 天然气地球科学, 2015, 26(4): 725-732.
[10] 刘蜀东,李晓平,张健,张泽贵. 鱼骨状分支水平井气水两相产能分析[J]. 天然气地球科学, 2015, 26(3): 550-555.
[11] 田巍,朱维耀,朱华银,张雪龄,王瑞明,李勇. 回压应力敏感性评价测试方法研究[J]. 天然气地球科学, 2015, 26(2): 377-383.
[12] 曹成,李天太,张磊,高潮,王晖. 考虑基质收缩效应的页岩气双孔双渗模型[J]. 天然气地球科学, 2015, 26(12): 2381-2387.
[13] 袁淋,李晓平. 低渗透气藏水平井气水两相产能研究[J]. 天然气地球科学, 2014, 25(9): 1455-1461.
[14] 张睿,宁正福,杨峰,赵华伟,杜立红,廖新维. 微观孔隙结构对页岩应力敏感影响的实验研究[J]. 天然气地球科学, 2014, 25(8): 1284-1289.
[15] 肖香姣,毕研鹏,王小培,高杰,常志强,张建业. 一种新的考虑应力敏感影响的三项式产能方程[J]. 天然气地球科学, 2014, 25(5): 767-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[2] 李桂菊, 庄新国. 多年冻土区沉积物中甲烷的生成[J]. 天然气地球科学, 2004, 15(5): 516 -518 .
[3] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[4] 黄安敏;裴建翔;陈志宏;李绪深;李林;. 油气储层预测技术在琼东南盆地BD13区的应用[J]. 天然气地球科学, 2006, 17(4): 518 -522 .
[5] 胡守志,付晓文,王廷栋,李延均 . 储层中的沥青沉淀带及其对油气勘探的意义[J]. 天然气地球科学, 2007, 18(1): 99 -103 .
[6] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[7] 刘文汇;黄第藩;熊传武;徐永昌;. 成烃理论的发展及国外未熟―低熟油气的分布与研究现状[J]. 天然气地球科学, 1999, 10(1-2): 1 -22 .
[8] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .
[9] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[10] 朱维耀;宋洪庆; 何东博;王明 ;贾爱林;胡永乐 . 含水低渗气藏低速非达西渗流数学模型及产能方程研究[J]. 天然气地球科学, 2008, 19(05): 685 -689 .