天然气地球科学

• 天然气地质学 • 上一篇    下一篇

致密砂岩储层流动单元定量识别方法探讨

陈文浩1,2,王志章1,2,潘潞4,李汉林3,侯加根1,2   

  1. 1.中国石油大学(北京)地球科学学院, 北京 102249 ;
    2.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
    3.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580;
    4.中国石油化工股份有限公司上海海洋油气分公司勘探开发研究院,上海 200120
  • 收稿日期:2015-06-30 修回日期:2015-09-29 出版日期:2016-05-10 发布日期:2016-05-10
  • 作者简介:陈文浩(1985-),男,湖北天门人,博士研究生,主要从事开发地质研究. E-mail:418220216@qq.com.
  • 基金资助:
    国家科技重大专项课题“鄂尔多斯盆地大牛地致密低渗气田勘探开发示范工程”(编号:2011ZX05045);国家十二五科技重大专项(编号:2011ZX05008-004)联合资助.

Discussions on flow unit quantitative identification methodology in tight sandstone reservoirs

Chen Wen-hao1,2,Wang Zhi-zhang1,2,Pan Lu4,Li Han-lin3,Hou Jia-gen1,2   

  1. 1.College of Geosciences,China University of Petroleum,Beijing 102249,China;
    2.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China;
    3.College of Geosciences and Technology,China University of Petroleum,Qingdao 266580,China;
    4.Institute of Exploration and Development SINOPEC Shanghai Offshore Oil and Gas Company,Shanghai 200120,China
  • Received:2015-06-30 Revised:2015-09-29 Online:2016-05-10 Published:2016-05-10

摘要: 流行的流动单元识别指数FZI不适于识别非均质性强,孔喉结构复杂的致密砂岩储层流动单元。以大牛地致密气藏储层为例,采用基于岩石孔隙结构和渗流特征的流动单元识别指数FZIm识别效果较好。当胶结指数m不是常量1,而是一个变量时,它对孔隙结构与渗流特征的影响较大。当m为1时,FZImFZI相同,即FZI仅是FZIm的特例。研究认为FZIm既适用于常规均质砂岩,也适于致密砂岩储层流动单元的识别。对未测m的流动单元,用本文介绍的预测方法预测m后,即可据FZIm对流动单元进行识别

关键词: 致密砂岩储层, 流动单元, 胶结指数, Kozeny-Carman方程

Abstract: Popular flow zone index FZI is not suitable for strong heterogeneity and complex pore throat structure reservoir flow units identification of tight sandstone reservoir.Taking Daniudi tight gas reservoir as an example,introducing the cementation exponent m which reflects the rock pore structure into improved Kozeny-Carman equation to calculate FZIm,the recognition results were satisfying.When m is not constant of 1,but a variable,it has bigger influence on the pore structure and seepage characteristics.If m=1,FZIm equates FZI,FZI is only special case of FZIm.Research suggests that FZIm is not only suitable for conventional homogeneous sandstone,but also for the recognition of tight sandstone reservoir flow unit.For sand sample without cementation exponent,using the method that introduced in this paper to predict m,we could get FZIm for flow unit identification.

Key words: Tight sand reservoir, Flow unit, Cementation exponent, Kozeny-Carman equation

中图分类号: 

  • TE122.2+4

[1]Jia Chengzao,Zheng Min,Zhang Yongfeng.Four important theoretical issues of unconventional petroleum geology[J].Acta Petrolei Sinica,2014,35(1):1-10.[贾承造,郑民,张永峰.非常规油气地质学重要理论问题[J].石油学报,2014,35(1):1-10.]
[2]Zhao Jingzhou.Conception,classification and resource potential of unconventional hydrocarbons[J].Natural Gas Geoscience,2012,23(3):393-406.[赵靖舟.非常规油气有关概念、分类及资源潜力[J].天然气地球科学,2012,23(3):393-406.]
[3]Qiu Zhen,Zou Caineng,Li Jianzhong,et al.Unconventional petroleum resources assessment:Progress and future prospects[J].Natural Gas Geoscience,2013,24(2):238-246.[邱振,邹才能,李建忠,等.非常规油气资源评价进展与未来展望[J].天然气地球科学,2013,24(2):238-246.]
[4]Yang Tao,Zhang Guosheng,Liang Kun,et al.The exploration of global tight sandstone gas and forecast of the development tendency in China[J].Engineering Sciences,2012,14(6): 64-68.[杨涛,张国生,梁坤,等.全球致密气勘探开发进展及中国发展趋势预测[J].中国工程科学,2012,14(6):64-68.]
[5]Hearn C L,Ebanks W J Jr,Tye R S,et al.Geological factors influencing reservoir performance of the Hartzog Draw field,Wyoming[J].Jpurnal of Pharmacy Technology,1984,36(9):1335-1344.
[6]Amaefule J O,Altunabay M.Enhanced reservoir description: Using core and log data to identify hydraulic(flow) units and predict permeability in uncored intervals/well[C]//Presented at the 68th Annual SPE Conference and Exhibition.SPE26436.USA: Houston,1993:205-220.
[7]Ti G,Ogbe D O,Munly W,et al.Use of flow units as a fool for reservoir description: A case study[J].SPE Formation Evaluation,1995,10(2):122-128.
[8]Canas J A,Malik Z A,Wu C H.Characterization of flow units in sandstone reservoirs:La Cira Field Colombia South America[R].SPE 27732.Permian Basin Oil and Gas Recovery Conference,16-18 March,Midland,Texas,1994:883-892.
[9]Martin A J,Solomon S T,Hartmann D J.Characterization of petrophysical flow units in carbonate reservoirs[J].AAPG Bulletin,1997,81(5):734-759.
[10]Tang Haifa,Peng Shimi,Zhao Yanchao.The classification and stochastic modeling of flow units in tight gas reservoir[J].Journal of Jilin University:Earth Science Edition,2007,37(3):469-474.[唐海发,彭仕宓,赵彦超.致密砂岩气藏储层流动单元划分方法及随机模拟[J].吉林大学学报:地球科学版,2007,37(3):469-474.]
[11]Yue Dali,Wu Shenghe,Lin Chengyan.Research progress in flow unit of clastic reservoir[J].Sciencepaper Online,2008,3(11):810-817.[岳大力,吴胜和,林承焰.碎屑岩储层流动单元研究进展[J].中国科技论文在线,2008,3(11):810-817.]
[12]Wang Zhizhang,He Gang.Division of reservoir flow unit and its application[J].Natural Gas Geoscience,2010,21(3):362-366.[王志章,何刚.储层流动单元划分方法与应用[J].天然气地球科学,2010,21(3):362-366.]
[13]Jin Yanxin,Lin Chengyan,Zhao Li,et al.Discussions on FZI methodology in flow unit identification and discrimination[J].Petroleum Exploration and Development,2004,31(5):130-132.[靳彦欣,林承焰,赵丽,等.关于用FZI划分流动单元的探讨[J].石油勘探与与开发,2004,31(5):130-132.]
[14]Nooruddin H A,Hossain M E.Modified Kozeny-Carman correlation for enhanced hydraulic flow unit characterization[J].Journal of Petroleum Science and Engineering,2011,80(1):107-1115.
[15]Izadi M,Ghalambor.A new approach in permeability and hydraulic-flow-unit determination[J].SPE Reservoir Evaluation & Engineering,2013,16(3):257-264.
[16]Carman P C.Fluid flow through granular beds[J].Transactions of the Institute of Chemical Engineering,1937(15):150-166.
[17]Kozeny J.Uber die kapillare Leitung des Wassers im Boden[J].Sitzungsberichte der Akademie der Wissenschaften in Wien 1927,(136): 271-306.
[18]Wyllie M R J,Rose W D.Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log Data[J].J.Pet.Technol.1950,(189):105-118.[HJ2mm]
[19]Rodolfo S B,Martin C,Perez O,et al.A new reservoir classification based on pore types improves characterization[R].SPE 152872.Latin America and Caribbean Petroleum Engineering Conference,16-18 April,Mexico City,Mexico,2012.
[20]Al-Ghamdi A,Aguilera R,Clarkson C R.Cementation exponent estimation for complex carbonate reservoirs using a triple porosity model[R].SPE 149104.Saudi Arabia Section Technical Symposium and Exhibition,15-18 May,Saudi Arabia,2011.
[21]Akbar M,Steckhan J,Tamimi M,et al.Estimating cementation factor(m) for carbonates using borehole images and logs[R].SPE 117786.Abu Dhabi International Petroleum Exhibition and Conference,3-6 November,Abu Dhabi,UAE.2008.[HJ]
[22]Tabibi M,Emadi M A.Variable cementation factor determination (Empirical Methods)[R].SPE 81485,Middle East Oil Show,9-12 June,Bahrain,2003.
[23]Budebes S,Saif O,Al-Farisi O,et al.Carbonate archie exponants correction model and variable determination[R].SPE 148377.SPE Reservoir Characterisation and Simulation Conference and Exhibition,9-11 October,Abu Dhabi,UAE,2011.
[24]Li Xiongyan,Qin Ruibao,Mao Zhiqiang,et al.Establishment and application of a high-precision cementation exponent model[J].Acta Petrolei Sinica,2014,35 (1):77-84.[李雄炎,秦瑞宝,毛志强,等.高精度胶结指数模型的建立与应用[J].石油学报,2014,35 (1):77-84.]

[1] 文开丰, 杨国平, 高君微, 郝玉鸿, 白慧, 张银德, 叶葱林, 孙龙. 鄂尔多斯盆地榆林气田马五 1+2气藏不同地质储量计算及采收率评价[J]. 天然气地球科学, 2019, 30(2): 266-273.
[2] 杨海军, 张荣虎, 杨宪彰, 王珂, 王俊鹏, 唐雁刚, 周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[3] 张艳,张春雷,高世臣. 基于SOM和HSV染色技术的致密砂岩储层地震相分析[J]. 天然气地球科学, 2018, 29(2): 259-267.
[4] 徐铮, 傅强, 惠萧, 李璟, 李士祥, 李祥同. 鄂尔多斯盆地华庆地区长613储层流动单元划分与展布[J]. 天然气地球科学, 2018, 29(12): 1757-1766.
[5] 赵军, 曹刚, 武延亮. 多元隶属函数在致密砂岩储层分类中的应用[J]. 天然气地球科学, 2018, 29(11): 1553-1558.
[6] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[7] 杨智峰,曾溅辉,韩菲,冯枭,冯森,张译丹,乔俊程. 鄂尔多斯盆地西南部长6—长8段致密砂岩储层微观孔隙特征[J]. 天然气地球科学, 2017, 28(6): 909-919.
[8] 张凤奇,钟红利,魏登峰,张凤博,柳伟明,刘伟. 鄂尔多斯盆地陕北斜坡东南部长7段致密砂岩油藏成藏物性下限[J]. 天然气地球科学, 2017, 28(2): 232-240.
[9] 周露,莫涛,王振鸿,朱文慧,尚江伟,陈维力,李梅,张琪. 塔里木盆地克深气田超深层致密砂岩储层裂缝分级分组合特征[J]. 天然气地球科学, 2017, 28(11): 1668-1677.
[10] 刘晓鹏, 刘燕, 陈娟萍, 胡爱平. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.
[11] 韩文学, 陶士振, 姚泾利, 麻伟娇. 鄂尔多斯盆地陇东地区长7段致密储层精细表征[J]. 天然气地球科学, 2016, 27(5): 820-826.
[12] 高帅,曾联波,马世忠,何永宏,巩磊,赵向原,许文国,唐小梅. 致密砂岩储层不同方向构造裂缝定量预测[J]. 天然气地球科学, 2015, 26(3): 427-434.
[13] 陆诗阔,王迪,李玉坤,孟宪军,胡向阳,陈舒薇. 鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J]. 天然气地球科学, 2015, 26(10): 1844-1850.
[14] 毕明威,陈世悦,周兆华,商琳,郑国强,张满郎,高立祥. 鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义[J]. 天然气地球科学, 2015, 26(10): 1851-1861.
[15] 郑斌,李菊花. 基于Kozeny—Carman方程的渗透率分形模型[J]. 天然气地球科学, 2015, 26(1): 193-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张水昌,赵文智,王飞宇,陈建平,肖中尧,钟宁宁,宋孚庆. 塔里木盆地东部地区古生界原油裂解气成藏历史分析――以英南2气藏为例[J]. 天然气地球科学, 2004, 15(5): 441 -451 .
[2] 郑军卫. 1991~2000年世界天然气生产一览表(108m3)[J]. 天然气地球科学, 2002, 13(3-4): 73 -81 .
[3] 胡 斌,李广之,吴向华,邓天龙 . 岩屑荧光录井技术及荧光指标量化方法[J]. 天然气地球科学, 2007, 18(1): 121 -124 .
[4] S.R.Dallimore;T.S.Collett;王万春;. 加拿大马更些三角洲西北部永冻层的气水合物[J]. 天然气地球科学, 1998, 9(3-4): 32 -36 .
[5] 徐永昌;刘文汇;沈平;陶明信;郑建京;. 天然气地球化学的重要分支――稀有气体地球化学[J]. 天然气地球科学, 2003, 14(3): 157 -166 .
[6] 王红岩,张建博,陈孟晋,刘洪林. 鄂尔多斯盆地煤层气与深盆气的关系[J]. 天然气地球科学, 2003, 14(6): 453 -455 .
[7] 赵靖舟. 论幕式成藏[J]. 天然气地球科学, 2005, 16(4): 469 -476 .
[8] 程付启;金强;. 成藏后天然气组分与同位素的分馏效应研究[J]. 天然气地球科学, 2005, 16(4): 522 -525 .
[9] 孙德强;张涛;梁彬;祁文珍;刘健;翟志锋;杨联系;刘志舟;赵凡 . 柴达木盆地北缘油气成藏特征[J]. 天然气地球科学, 2008, 19(05): 652 -656 .
[10] 晋香兰;张泓. 鄂尔多斯盆地延安组煤层对常规天然气的贡献率研究[J]. 天然气地球科学, 2008, 19(05): 662 -664 .