天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩气储层岩石三维数字岩心建模——以导电性模型为例

聂昕,邹长春,孟小红,贾爽,万宇   

  1. 1.油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉430100;
    2.非常规油气湖北省协同创新中心,湖北 武汉430100;
    3.地下信息探测技术与仪器教育部重点实验室(中国地质大学(北京)),北京 100083;
    4.中国石化石油勘探开发研究院,北京 100083
  • 收稿日期:2015-07-05 修回日期:2015-08-30 出版日期:2016-04-10 发布日期:2016-04-10
  • 作者简介:聂昕(1987-),男,河南滑县人,讲师,博士,主要从事非常规资源测井资料解释及数字岩石物理研究.E-mail:niexin_cugb@126.com.
  • 基金资助:

    国家自然科学基金资助项目(编号:41274185;41504094);油气资源与勘探技术教育部重点实验室(长江大学)开放基金资助项目(编号:K2015-06)联合资助.

3D digital core modeling of shale gas reservoir rocks:A case study of conductivity model

Nie Xin,Zou Chang-chun,Meng Xiao-hong,Jia Shuang, Wan Yu   

  1. (1.Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Wuhan 430100,China;
    2.Hubei Cooperative Innovatio Center of Unconventional Oil and Gas,Wuhan 430100,China;
    3.Key Laboratory of Geo-detection(China University of Geosciences,Beijing),Ministry of Education,Beijing 100083,China;
    4.Petroleum Exploration and Development Research Institute,SINOPEC,Beijing 100083,China)
  • Received:2015-07-05 Revised:2015-08-30 Online:2016-04-10 Published:2016-04-10

摘要:

由于页岩气储层具有低孔低渗、各向异性突出、矿物组分复杂等特点,作为基础研究的岩石物理实验开展非常困难,三维数字岩心模型的建立可为其物理特性的数值模拟奠定基础,但常规的建模方法并不适用于复杂的页岩气储层。利用页岩气储层的二维SEM—EDS图像获得其各组分的分布特征,选取导电性模拟需要的组分(孔隙、黏土矿物、黄铁矿、有机质等)以及可以体现岩石宏观特性的尺度(40μm3),选用马尔可夫链—蒙特卡罗(MCMC)法并加以改进,分别构建各微观组分的三维模型,并将这些模型嵌套组合,最终获得包含导电性相关的矿物组分以及原始结构特征的页岩气储层微米级三维数字岩心。对建模方法和建模的结果进行了评价,结果表明建立的数字岩心模型可以进行页岩气储层导电性的数值模拟研究,也为页岩气储层其他物理性质的三维数字岩心建模提供了思路;提出了建模方法中存在的问题和不足,对以后的页岩气储层数字岩心建模方面的研究提出了建议。

关键词: 页岩气储层, 数字岩心, 马尔可夫链—蒙特卡洛法, 三维重构, 微观组分, 岩石导电性

Abstract:

Due to the properties of low porosity,low permeability,prominent anisotropy and complex mineral composition,the basic research of shale reservoir rock,and the physical experiments cannot be carried out smoothly.The 3D digital core modeling is the foundation for the numerical simulation which could be the replacement of the experimental methods to study the rock's physical properties.However,the conventional modeling methods are not applicable to help rebuilding the digital core model of complex rock of shale gas reservoirs.In this paper,the 2D SEM and EDS images of shale gas reservoir rock were used to obtain the distribution characteristics of each composition.The components such as pore,clay,pyrite and organic matters which are needed in electrical conductivity simulation were selected.After choosing the appropriate scale(40μm3) which can reveal the macroscopic features of rocks,the Markov Chain-Monte Carlo(MCMC) method was chosen and improved to build the original 3D model of each micro components respectively.Then the models were nested into each other to form the final micron grade 3D model which contains several components and the characteristics of the original structure.The final model was evaluated and the results showed that the digital core model could be used for conductivity numerical simulation of shale gas reservoir.Using this method,models for the simulation of other physical properties could also be built.The disadvantages of this method were discussed and the suggestions to improve the modeling were given.

Key words: Shale gas reservoir, Digital core modeling, Markov Chain-Monte Carlo, 3D reconstruction, Micro component, Rock conductivity

中图分类号: 

  • TE122.2
[1]Liu Chenglin.Unconventional Oil and Gas Resources[M].Beijing:Geological Press,2011.[刘成林.非常规油气资源[M].北京:地质出版社,2011.]
[2]Zhang Jinchuan,Bian Ruikang,Jing Tieya,et al.Fundamental significance of gas shale theoretical research[J].Geological Bulletin of China,2011,30(2/3):318-323.[张金川,边瑞康,荆铁亚,等.页岩气理论研究的基础意义[J].地质通报,2011,30(2/3):318-323.]
[3]Zhang Weidong,Guo Min,Jiang Zaixing.Parameters andmethod for shale gas reservoir evaluation[J].Natural Gas Geosciences,2011,22(6):1093-1099.[张卫东,郭敏,姜在兴.页岩气评价指标与方法[J].天然气地球科学,2011,22(6):1093-1099.]
[4]Nie Haikuan,Zhang Jinchuan.Types and characteristics of shale gas reservoir:A case study of Lower Paleozoic in and around Sichuan Basin[J].Petroleum Geology & Experiment,2011,33(3):219-225.[聂海宽,张金川.页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J].石油实验地质,2011,33(3):219-225.]
[5]Zheng Weijun,Sun Deqiang,Li Xiaoyan,et al.Advances in exploration and exploitation technologies of shale gas[J].Natural Gas Geosciences,2011,22(3):511-517.[郑军卫,孙德强,李小燕,等.页岩气勘探开发技术进展[J].天然气地球科学,2011,22(3):511-517.]
[6]Sun Jianmeng,Jiang Liming,Liu Xuefeng,et al.Log application and prospect of digital core technology[J].Well Logging Technology,2012,36(1):1-7.[孙建孟,姜黎明,刘学锋,等.数字岩心技术测井应用与展望[J].测井技术,2012,36(1):1-7.]
[7]Lymberopoulos D P,Payatakes A C.Derivation of topological,geometrical,and correlational properties of porous media from pore-chart analysis of serial section data[J].Journal of Colloid and Interface Science,1992,150(1):61-80.
[8]Vogel H J,Roth K.Quantitative morphology and network representation of soil pore structure[J].Advances in Water Resources,2001,24(3/4):233-242.
[9]Tomutsa L,Radmilovic V.FocusedIon Beam Assisted Three-dimensional Rock Imaging at Submicron-scale[C]//Proceedings of International Symposium of the Society of Core Analysts,2003,Pau,France.
[10]Tomutsa L,Silin D.NanoscalePore Imaging and Pore Scale Fluid Flow Modeling in Chalk[R].Lawrence Berkeley National Laboratory:Paper LBNL-56266,2004.
[11]Tomutsa L,Silin D,Radmilovic V.Analysis of chalk petrophysical properties by means of submicron-scale pore imaging and modeling[J].SPE Reservoir Evaluation & Engineering,2007,10(3):285-293.
[12]Dunsmuir J H,Ferguson S R,D’Amico K L,et al.X-ray Micro-tomography:A New Tool for the Characterization of Porous Media[C].Proceedings of 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers,1991,Dallas,TX.SPE 22860.1991.
[13]Li Yubin,Li Xiangliang,Gao Yan.Study of microscopic rock feature using microfocus X-CT imaging[J].Oil and Gas Recovery Technology,2000,7(4):50-52.[李玉彬,李向良,高岩.用微焦点X-CT成象研究岩石微观特征[J].油气采收率技术,2000,7(4):50-54.]
[14]Zhang Shunkang,Chen Yueming,Hou Jian.Three dimensional visualization for CT tomographic image of microscopic flow law of rock pore[J].Journal of Oil and Gas Technology,2006,28(4):107-110.[张顺康,陈月明,侯健.岩石孔隙中微观流动规律的CT层析图像三维可视化研究[J].石油天然气学报,2006,28(4):107-110.]
[15]Yin Xiaotao,Wang Shuilin,Dang Faning,et al.Study on fractal characteristics of sandstone damage-fracture under CT test condition[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(supplement1):2721-2726.[尹小涛,王水林,党发宁,等.CT实验条件下砂岩破裂分形特性研究[J].岩石力学与工程学报,2008,27(增刊1):2721-2726.]
[16]Zhao Yongfeng,Chen Shijiang.Study on fractal of rock CT image based on VC++[J].Mining Technology,2008,8(6):70-71.[赵永峰,陈世江.基于VC++岩石CT图像的分形研究[J].采矿技术,2008,8(6):70-71.]
[17]Wang Jialu,Gao Jian,Liu Li.Porosity characteristics of sandstone by X-ray CT scanning system[J].Acta Petrolei Sinica,2009,30(6):887-897.[王家禄,高建,刘莉.应用CT技术研究岩石孔隙变化特征[J].石油学报,2009,30(6):887-897.]
[18]Coenen J,Tchouparova E,Jing X.Measurement parameters and resolution aspects of micro X-ray tomography for advanced core analysis[C]//Proceedings of International Symposium of the Society of Core Analysts,Abu Dhabi:UAE,2004:256-261.
[19]Rosenberg E,Lynch J,Guéroult P.High resolution 3D reconstructions of rocks and composites[J].Oil & Gas Science and Technology,1999,54(4):497-511.
[20]Arns C H.TheInfluence of Morphology on Physical Properties of Reservoir Rocks[D].Sydney:The University of New South Wales,2002.
[21]Arns C H.A Comparison of pore size distributions derived by NMR and X-ray-CT techniques[J].Physica A:Statistical Mechanics and its Applications,2004,339(1/2):159-165.
[22]Arns C H,Bauget F,Limaye A,et al.Pore scale characterization of carbonates using X-Ray microtomography[J].SPE Journal,2005,10(4):475-484.
[23]Youssef S,Bauer D,Han M,et al.Pore-network models combined to high resolution micro-CT to assess petrophysical properties of homogenous and heterogenous rocks[C]//International Petroleum Technology Conference,Kuala Lumpur,Malaysia,2008:12884-MS.
[24]Varslot T,Ghous A,Latham S,et al.Pore scale characterization of carbonates at multiple scales:integration of Micro CT,BSEM and FIBSEM[J].Petrophysics,2010,51(6),379-387.
[25]Sisk C,Diaz E,Walls J,et al.3D visualization and classification of pore structure and pore filling in gas shales[C]//SPE Annual Technical Conference and Exhibition,Florence,Italy:2010.SPE 134582.
[26]Curtis M E,Ambrose R J,Sondergeld C H.Structural characterization of gas shales on the micro-and nano-scales[C]//Canadian Unconventional Resources and International Petroleum Conference,Calgary,Alberta,Canada:2010.SPE 137693.
[27]Liu Xuefeng.Numerical Simulation of Elastic and Electrical Properties of Rock Based on Digital Cores[D].Dongying:China University of Petroleum(East China),2010.[刘学锋.基于数字岩心的岩石声电特性微观数值模拟研究[D].东营:中国石油大学(华东),2010.]
[28]Li Renmin,Liu Songyu,Fang Lei,et al.Micro-structure of clay generated by quartet structure generation set[J].Journal of Zhejiang University:Engineering Science,2010,44(10):1897-1901.[李仁民,刘松玉,方磊,等.采用随机生长四参数生成法构造黏土微观结构[J].浙江大学学报:工学版,2010,44(10):1897-1901.]
[29]Joshi M.AClass Three-dimensional Modeling Technique for Studying Porous Media[D].Kansas:University of Kansas,1974.
[30]Quiblier J A.A new three-dimensional modeling technique for studying porous media[J].Journal of Colloid and Interface Science,1984,98(1):84-102.
[31]Adler P M,Jacquin C G,Quiblier J A.Flow in simulated porous media[J].International Journal of Multiphase Flow,1990,16(4):691-712.
[32]Ioannidis M A,Chatzis I.A dual-network model of pore structure for vuggy carbonates[C]//International Symposium of the Society of Core Analysts,Abu Dhabi:2000:1-12.
[33]Keehm Y.Computational Rock Physics:Transport Properties in Porous Media and Applications[D].Stanford:Stanford University,2003.
[34]Zhu Yihua,Tao Guo.Sequentialindicator simulation technique and its application in 3D digital core modeling[J].Well Logging Technology,2007,31(2):112-115.[朱益华,陶果.顺序指示模拟技术及其在3D数字岩心建模中的应用[J].测井技术,2007,31(2):112-115.]
[35]Zhu Yihua,Tao Guo,Fang Wei.Application of image processing technique in digital core modeling[J].Journal of Oil and Gas Technology,2007,29(5):54-57.[朱益华,陶果,方伟.图像处理技术在数字岩心建模中的应用[J].石油天然气学报,2007,29(5):54-57.]
[36]Hazlett R D.Statistical characterization and stochastic modeling of pore networks in relation to fluid flow[J].Mathematical geology,1997,29(6):801-822.
[37]Hidajat I,Rastogi A,Singh M.Transport properties of porous media from thin section[J].SPE Journal,2002,7(1):40-48.
[38]Zhao Xiucai,Yao Jun,Tao Jun,et al.A method of constructing digital core by simulated annealing algorithm[J].Applied Mathematics A Journal of Chinese Universities:Serial A,2007,22(2):127-133.[赵秀才,姚军,陶军,等.基于模拟退火算法的数字岩心建模方法[J].高校应用数学学报:A辑,2007,22(2):127-133.]
[39]Zhang Ting,Li Daolun,Lu Detang,et al.Research on the reconstruction method of porous media using multiple-point geostatistics[J].Science China:Serial G,2009,39(9):1348-1360.[张挺,李道伦,卢德唐,等.基于多点地质统计法的多孔介质重构研究[J].中国科学:G辑,2009,39(9):1348-1360.]
[40]Okabe H,Blunt M J.Prediction of permeability for porous media reconstructed using multiple-point statistics[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2004,70(2):264-277.
[41]Zhang Li,Sun Jianmeng,Sun Zhiqiang,et al.Application of multiple-point geostatistics in 3D pore structure model reconstruction[J].Journal of China University of Petroleum:Edition of Natural Sciences,2012,36(2):105-109.[张丽,孙建孟,孙志强,等.多点地质统计学在三维岩心孔隙分布建模中的应用[J].中国石油大学学报:自然科学版,2012,36(2):105-109.][JP]
[42]Wu K,Nunan N,Crawford J W,et al.An efficient Markov chain model for the simulation of heterogeneous soil structure[J].Soil Science Society of American,2004,68:346-351.
[43]Wu K,Van Dijke I J M,Couples G D,et al.3D stochastic modelling of heterogeneous porous media-applications to reservoir rocks[J].Transport in Porous Media,2006,65(3):443-467.
[44]Wang Bo,Ning Zhengfu,Ji Jiang.Study on 3D reconstruction methods of porous medium model[J].Journal of Xi’an Shiyou University:Natural Science Edition,2012,27(4):54-57.[王波,宁正福,姬江.多孔介质模型的三维重构方法[J].西安石油大学学报:自然科学版,2012,27(4):54-57.]
[45]Wang Chenchen,Yao Jun,Yang Yongfei,et al.Structure characteristics analysis of carbonate dual pore digital rock[J].Journal of China University of Petroleum:Edition of Natural Sciences,2013,37(2):71-74.[王晨晨,姚军,杨永飞,等.碳酸盐岩双孔隙数字岩心结构特征分析[J].中国石油大学学报:自然科学版,2013,37(2):71-74.]
[46]Wang Bo.The Microscopic Percolation Study of Shale Gas Based on the Digital Core[D].Beijing:China University of Petroleum(Beijing),2013.[王波.基于数字岩心的页岩气微观渗流研究[D].北京:中国石油大学(北京),2013.]
[47]Bakke S,ren P E.3-Dpore-scale modelling of sandstones and flow simulations in the pore networks[J].SPE Journal,1997,2(2):136-149.
[48]Jiang Liming.Numerical Simulation of Acoustic and Electrical Properties of Natural Gas Reservoir Rocks Based on Digital Core[D].Dongying:China University of Petroleum(East China),2012.[姜黎明.基于数字岩心的天然气储层岩石声电特性数值模拟研究[D].东营:中国石油大学(华东),2012.]
[49]ren P E,Bakke S.Reconstruction of Berea sandstone and pore-scale modeling of wettability effects[J].Journal of Petroleum Science and Engineering,2003,39(2):177-199.
[50]Liu X F,Sun J M,Wang H T.Reconstruction of 3-D digital cores using a hybrid method[J].Applied Geophysics,2009,6(2):105-112.
[51]Walls J D,Sinclair S W.Eagle Ford Shale characterization by Digital Rock Physics(DRP)[C]//SPWLA Annual Symposium Short Course.Lab Measurements of Shale Gas Cores,Colorado Springs,Colorado,2011.
 
[1] 鄢友军,李隆新,徐伟,常程,邓惠,杨柳. 三维数字岩心流动模拟技术在四川盆地缝洞型储层渗流研究中的应用[J]. 天然气地球科学, 2017, 28(9): 1425-1432.
[2] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[3] 张吉振,李贤庆,郭曼,董泽亮,王哲,付庆华,王飞宇. 川南地区二叠系龙潭组页岩微观孔隙特征及其影响因素[J]. 天然气地球科学, 2015, 26(8): 1571-1578.
[4] 李贤庆,王元,郭曼,张吉振,赵佩,徐红卫,杨杰,王飞宇. 川南地区下古生界页岩气储层孔隙特征研究[J]. 天然气地球科学, 2015, 26(8): 1464-1471.
[5] 陈尚斌,秦勇,王阳,张寒,左兆喜. 中上扬子区海相页岩气储层孔隙结构非均质性特征[J]. 天然气地球科学, 2015, 26(8): 1455-1463.
[6] 赵佩,李贤庆,田兴旺,苏桂萍,张明扬,郭曼,董泽亮,孙萌萌,王飞宇. 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学, 2014, 25(6): 947-956.
[7] 邱小松,杨波,胡明毅. 中扬子地区五峰组—龙马溪组页岩气储层及含气性特征[J]. 天然气地球科学, 2013, 24(6): 1274-1283.
[8] 魏祥峰,刘若冰,张廷山,梁 兴. 页岩气储层微观孔隙结构特征及发育控制因素——以川南—黔北XX地区龙马溪组为例[J]. 天然气地球科学, 2013, 24(5): 1048-1059.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂采军,赵军,夏宏权, 刘之的. 地层破裂压力测井预测的统计模式研究[J]. 天然气地球科学, 2004, 15(6): 633 -636 .
[2] 杨满平,李允. 考虑储层初始有效应力的岩石应力敏感性分析[J]. 天然气地球科学, 2004, 15(6): 601 -603 .
[3] 谢兴礼;朱玉新;冀光;夏静;. 气藏产能评价方法及其应用[J]. 天然气地球科学, 2004, 15(3): 276 -279 .
[4] 胥洪俊;范明国;康征;常志强;张绍俊 . 考虑渗透率应力敏感的低渗气藏产能预测公式[J]. 天然气地球科学, 2008, 19(1): 145 -147 .
[5] 张 乐,姜在兴,郭振廷. 构造应力与油气成藏关系[J]. 天然气地球科学, 2007, 18(1): 32 -36 .
[6] 相建民;. 塔里木油田水平井优化设计方法及跟踪效果评价[J]. 天然气地球科学, 2006, 17(4): 435 -438 .
[7] 王天祥;朱忠谦;李汝勇;陈朝晖;吴震;. 大型整装异常高压气田开发初期开采技术研究――以克拉2气田为例[J]. 天然气地球科学, 2006, 17(4): 439 -444 .
[8] 朱华银;陈建军;李江涛;胡勇;. 疏松砂岩气藏出砂机理研究[J]. 天然气地球科学, 2006, 17(3): 296 -299 .
[9] 王善聪;赵 玉;李江涛;梅 洪;胡昌德 . 三层分采及分层测压技术在涩北气田的应用研究[J]. 天然气地球科学, 2007, 18(2): 307 -311 .
[10] 刘吉余;马志欣;孙淑艳 . 致密含气砂岩研究现状及发展展望[J]. 天然气地球科学, 2008, 19(3): 316 -319 .