天然气地球科学

• 天然气地质学 • 上一篇    下一篇

页岩吸附气含量测定的影响因素定量分析

马行陟,柳少波,姜林,田华,郝加庆   

  1. (1.中国石油勘探开发研究院,北京 100083;2.中国石油天然气集团公司盆地构造与油气成藏重点实验室,北京 100083;3.提高石油采收率国家重点实验室,北京 100083)
  • 收稿日期:2015-08-14 修回日期:2016-01-26 出版日期:2016-03-10 发布日期:2016-03-10
  • 作者简介:马行陟(1984-),男,山东济宁人,工程师,博士,主要从事天然气地质和油气成藏机理研究. E-mail:maxingzhi@petrochina.com.cn.
  • 基金资助:

    中国石油天然气股份公司“十二五”科技攻关课题(编号:2014A-0214)资助.

Quantitative analysis on affecting factors of gas adsorption capacity measurement on the shale

Ma Xing-zhi,Liu Shao-bo,Jiang Lin,Tian Hua,Hao Jia-qing   

  1. (1.Research Institute of Petroleum Exploration and Development,Beijing 100083,China;2.Key Laboratory of
    Basin Structure and Petroleum Accumulation,China National Petroleum Corporation,Beijing 100083,China;
    3.State Key Laboratory of Enhanced Oil Recovery,Beijing 100083,China)
  • Received:2015-08-14 Revised:2016-01-26 Online:2016-03-10 Published:2016-03-10

摘要:

页岩气是一种重要的非常规天然气资源,页岩吸附气含量的准确测定是正确评价页岩含气量和资源潜力的关键参数。通常采用等温吸附实验的方法确定页岩吸附气含量。但是,现在多数情况下页岩高压时的吸附量出现负值,等温吸附曲线特征也呈现下降形态,与以往在煤层气领域的认识明显不同。为了正确解释此种现象,研究中选取了国际页岩吸附量测定对比的标准样品(Kimmeridge页岩、Posidonia页岩)以及我国四川盆地龙马溪组和塔里木盆地奥陶系页岩等样品,开展了一系列的等温吸附实验和数值计算,对页岩吸附气含量测定的影响因素进行了半定量—定量分析。研究表明,气体状态方程、自由空间体积、压力传感器精度和空白测试等是影响页岩吸附气含量测定的主要因素。气体状态方程中,Se-W方程最适用于页岩的甲烷吸附量计算,其次是S-R-K方程,最差的是P-R方程。自由空间体积与吸附量呈负相关关系,即自由空间体积偏大,吸附量比实际减小;相反,自由空间体积偏小,吸附量结果比实际大,高压条件下对吸附量的影响更为明显。相对于温度传感器,压力传感器精度对页岩甲烷吸附量的影响更为突出,万分之一精度压力传感器的等温吸附实验结果比千分之一精度的更精确。此外,未经过空白测试校正的页岩吸附量通常比实际吸附量低,且会导致吸附量出现负值。因此,开展页岩吸附气含量的测定需要对影响因素进行系统的认识和相应的校正。

关键词: 页岩气, 等温吸附, 含气量, 影响因素, 校正方法

Abstract:

Shale gas,stored in micro-nano pore systems in free state and clay and organic matter in sorption state,is one important type of unconventional natural gas resource.Accurate determination of adsorption gas content is a key parameter to evaluate the gas content and resource potential of shale.Usually the method of isothermal adsorption experiment is adopted to determine the adsorption capacity of the shale.However,obviously different with previous knowledge in the field of coalbed methane,the adsorption capacity of the shale at high pressure is negative,and the curve of isothermal adsorption curve decreases with the increase of pressure in most cases.In order to correctly explain this phenomenon,this study selected various shale samples from standard samples of international inter-laboratory comparison (e.g.Kimmeridge shale,Posidonia shale),Longmaxi Formation in Silurian in Sichuan basin and Ordovician in Tarim Basin.Isothermal adsorption experiments on shale and numerical error analysis are performed.Results show that equation of state (EOS),void volume,pressure sensor accuracy and blank test are identified as major factors to affect the accurate measurement of gas adsorption capacity on shale.In the EOS,the Se-W equation is the most suitable for the calculation of the methane adsorption capacity of the shale,and the second is the S-R-K equation.P-R equation is the worst.Adsorption capacity of shale is negatively related with void volume.The void volume has an error that measurement value is larger than real,which would result in reducing adsorption capacity of the shale.In the condition of high pressure,the effect of void volume error on the adsorption quantity is more serious.Comparison with the temperature sensor,the influence of pressure sensor accuracy on the shale methane adsorption capacity is more prominent.The adsorption capacity test accuracy and stability of measurement system with 10-4 precision pressure sensor superior to that with 10-3 precision pressure sensor.In addition,the test adsorption capacity of the shale which is not corrected by the blank test is usually lower than the actual adsorption capacity,and possibly leads to negative values of adsorption.

Key words: Shale gas, Isotherm sorption, Gas content, Affecting factors, Correction method

中图分类号: 

  • TE132.2

[1]Brown S P A,Krupnick A.Abundant Shale Gas Resources:Long-Term [JP]Implications for U.S.Natural Gas Markets[J].Ssrn Electronic Journal,2010(dp-10-41):1-33.
[2]Iii K B M.Modeling the implications of expanded US shale gasproduction[J].Energy Strategy Reviews,2012,1(1):33-41.
[3]Weijermars R.US shale gas production outlook based on well roll-out rate scenarios[J].Applied Energy,2014,124(1):283-297.
[4]EIA.WorldShale Gas Resource:An Initial Assessment of 14 Regions outside the United States[R].www.eia.gov,2011:4-56.[JP]
[5]Jia Chengzao,Zheng Min,Zhang Yongfeng.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):129-136.[贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.]
[6]DongDazhong,Zou Caineng,Yang Hua,et al.Progress and prospects of shale gas exploration and development in China[J].Acta Petrolei Sinica,2012,33(supplement1):107-114.[董大忠,邹才能,杨桦,等.中国页岩气勘探开发进展与发展前景[J].石油学报,2012,33(增刊1):107-114.]
[7]Gasparik M,Ghanizadeh A,Gensterblum Y,et al.“Multi-temperature” method for high-pressure sorption measurements on moist shales[J].Review of Scientific Instruments,2013,84(8):1-9.[JP]
[8]Ross D J K,Bustin R M.Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J].Fuel,2007,86(17-18):2696-2706.
[9]Ross D J K,Bustin R M.Sediment geochemistry of the Lower Jurassic Gordondale member,northeastern British Columbia[J].Bulletin of Canadian Petroleum Geology,2006,54(4):337-365.[JP]
[10]Nie Haikuang,Zhang Jinchuang,Ma Xiaobin,et al.A preliminary study of negative adsorption phenomena of shale adsorption gas content by isothermal adsorption[J].Earth Science Frontiers,2013,20(6):282-288.[聂海宽,张金川,马晓彬,等.页岩等温吸附气含量负吸附现象初探[J].地学前缘,2013,20(6):282-288.][JP]
[11]Ma Xingzhi,Song Yan,Liu Shaobo,et al.Quantitative research on adsorption capacity evolution of middle-high rank coal reservoirs in geological history:A case study from Hancheng area in Ordos Basin[J].Acta Petrolei Sinica,2014,35(6):1080-1084.[马行陟,宋岩,柳少波,等.中高煤阶煤储层吸附能力演化历史定量恢复——以鄂尔多斯盆地韩城地区为例[J].石油学报,2014,35(6):1080-1084.]
[12]Jiang Wenping,Zhang Qun,Li Jianwu.Coal reservoir properties and coalbed gas controlling factors of Jiaozuo coalfield[J].Natural Gas Geoscience,2009,20(3):442-445.[降文萍,张群,李建武.不同实验条件下 Langmuir体积随煤级变化机理研究[J].天然气地球科学,2009,20(3):442-445.]
[13]Krooss B M,Bergen F V,Gensterblum Y,et al.High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J].International Journal of Coal Geology,2002,51(2):69-92.
[14]Wiliam D,Mcain Jr.Petroleum Fluids[M].Oklahoma:Penn Well Publishing Company,1990:22-35.
[15]QinJishun,Li Aifen.Physical Properties Petroleum Reservoir[M].Dongying:China University of Petroleum Press,2006:41-43.[秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2006:41-43.]
[16]SY/T6132-1995.Determination of Methane Adsorption Quantity of Coal Rock.Volumetric Method[S].Beijing:China National Petroleum Company,1996.[SY/T6132-1995,煤岩中甲烷吸附量测定容量法[S].北京:中国石油天然气总公司,1996.][JP]
[17]Redlich O,Kwong J.On the thermodynamics of solutions.V:An equation of state fugacities of gaseous solutions[J].Chemical Reviews,1949,44(1):233-244.
[18]Soave G.Equilibrium constants from a modifiedRedlich-Kwong equation of state[J].Chemical Engineering Science,1972,27(6):1197-1203.
[19]Robinson D B,Peng D,Chung S Y.The development of the Peng-Robinson equation and its application to phase equilibrium in a system containing methanol[J].Fluid Phase Equilibria,1985,24(1):25-41.
[20]Benedict M,Webb G B,Rubin L C.An empirical equation for thermodynamics properties of light hydrocarbons and their mixture[J].Journal of Physical Chemistry,1940(8):334-345.[JP]
[21]Setzmann U,Wagner W.A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa[J].Journal of Physical & Chemical Reference Data,1991,20(6):1061-1155.
[22]Gasparik M,Rexer T F T,Aplin A C,et al.First international inter-laboratory comparison of high-pressure CH4,CO2 and C2H6 sorption isotherms on carbonaceous shales[J].International Journal of Coal Geology,2014,132:131-146.

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[9] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[10] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[11] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[12] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[13] 段毅,吴应忠,赵阳,曹喜喜,马兰花. 草本沼泽泥炭加水热解产物烃类气体氢同位素特征[J]. 天然气地球科学, 2018, 29(3): 305-310.
[14] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[15] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!