天然气地球科学

• 非常规天然气 • 上一篇    下一篇

高过成熟页岩储层演化特征与成因

李新景,陈更生,陈志勇,王兰生,王玉满,董大忠,吕宗刚,吕维宁,王淑芳,黄金亮,张晨晨   

  1. (1.中国石油勘探开发研究院,北京 100083;2.中国石油西南油气田分公司,四川 成都 610041)
  • 收稿日期:2015-10-08 修回日期:2016-01-26 出版日期:2016-03-10 发布日期:2016-03-10
  • 作者简介:李新景(1965-),女,黑龙江宝清人,高级工程师,主要从事页岩储层综合地质评价研究. E-mail:xinjingli@petrochina.com.cn.
  • 基金资助:

    国家重点基础研究发展计划(“973”)项目(编号:2013CB228001);国家科技重大专项“页岩气重点地区资源评价”(编号:2011ZX05018-001)联合资助.

An insight into the mechanism and evolution of shale reservoir characteristics with over-high maturity

Li Xin-jing,Chen Geng-sheng,Chen Zhi-yong,Wang Lan-sheng,Wang Yu-man,Dong Da-zhong,Lü Zong-gang,Lü Wei-ning,Wang Shu-fang,Huang Jin-liang,Zhang Chen-chen   

  1. (1.Research Institute of Exploration and Development,PetroChina,Beijing 100083,China;
    2.Southwest Oil and Gas Field Company,PetroChina,Chengdu 610041,China)
  • Received:2015-10-08 Revised:2016-01-26 Online:2016-03-10 Published:2016-03-10

摘要:

高过成熟是中国南方下古生界海相富有机质页岩储层的重要特征之一,它经历了近乎完整的热演化过程,产出大量油气和有机质孔隙。页岩有机质孔隙实际上包括干酪根孔隙、固体沥青/焦沥青孔隙。依据成岩序列、油气充注、有机质和孔隙的形态特征,识别出固体沥青或焦沥青次生孔隙,并通过典型案例构成的成熟序列,分析影响储层孔隙度与有机质丰度之间关系的主要因素,探究热演化进程中页岩展示出的诸多变化特征与成因,如天然气碳同位素由部分反转进入完全反转区、孔隙表面水润湿—油润湿—水润湿的动态转变、储层电阻率先上升后下降的逆转现象以及岩石各向异性参数的非线性波动,揭示中国南方下古生界页岩气储层可能的演化轨迹,展示不同成熟阶段页岩储层之间的内在变化规律。

关键词: 高过成熟度, 页岩储层, 固体沥青, 属性

Abstract:

Over high maturity is one of the important characteristics of marine organic-rich shale reservoirs from Lower Paleozoic in the Southern China.The organic matter(OM) of gas shale reservoirs almost went through the whole range of thermal evolution.During this wide span,the great amount of hydrocarbon was available and the numerous pores were seen located within OM including kerogen and solid bitumen /pyrobitumen.These nanopores in solid bitumen/pyrobitumen can be identified from SEM image,based on the diagenesis sequence,hydrocarbon charge with the shape of OM and pores.In terms of the maturity process showed by the typical different cases,the main effects on the relationship between reservoir porosity and organic carbon abundance are here interpreted,and the change and mechanism of reservoir properties due to thermal evolution are explored,such as gas carbon isotope from partially rollover zone into completely rollover zone,wettability alteration from water-wet to oil-wet and then water-wet pore surface again,electrical resistivity reversal from increasing stage into decreasing stage,nonlinearity fluctuation of rock anisotropy parameters as well.These indicate the very possible evolution pathway for shale gas reservoirs from Lower Paleozoic in the southern China and the general transformation processes between different shale reservoirs during thermal stages.

Key words: Over-high maturity, Shale reservoirs, Solid bitumen, Properties

中图分类号: 

  • TE122.1

[1]Tissot B P,Welte D H.Petroleum Formation and Occurrence[M].Xu Yongyuan,Xu Qian,Hao Shisheng,translated.Beijing:Petroleum Industry Press,1984:1-463[蒂索B P,威尔特D H.石油形成与分布[M] .徐永远,徐谦,郝石生译.北京:石油工业出版社,1989:1-357.]
[2]Cao Chunhui,Zhang Mingjie,Tang Qingyan,et al.Geochemical characteristics and implications of shale gas Longmaxi Formation,Sichuan Basin,China[J].Natural Gas Geoscience,2015,26(8):1604-1612.[曹春辉,张铭杰,汤庆艳,等.四川盆地志留系龙马溪组页岩气体地球化学特征及意义[J].天然气地球科学,2015,26(8):1604 -1612.]
[3]Qu Zhenya,Sun Jianan,Shi Jianting,et al.Characteristics of stable carbon iosotopic composition of shale gas[J].Natural Gas Geoscience,2015,26(7):1376-1384.[屈振亚,孙佳楠,史健婷,等.页岩气稳定碳同位素特征研究[J].天然气地球科学,2015,26(7):1376-1384.]
[4]Li Xinjing.Characteristics of Shale Gas Reservoirs for High Maturity in Sichuan Basin[D].Beijing:Research Institute of Exploration and Development,Petrochina,2010:1-79.[李新景.四川盆地高成熟海相含气页岩储层特征研究[D].北京:中国石油勘探开发研究院博士后工作报告,2010:1-79.]
[5]Curtis M E,Cardott B J,Sondergeld C H,et al.Development of organic porosity in the Woodford shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103:26 -31.
[6]Kethireddy N,Chen H,Heidari Z.Quantifying the effect of kerogen on resistivity measurements in organic-rich rocks[J].Petrophysics,2014,55(3):136-146.
[7]Durand B,Nicaise G.Procedures for kerogen isolation[C]//Durand B.Kerogen-insoluble organic matter from sedimentary rocks.Paris:Technip,1980:35-53.
[8]Fu Jiamo,Wang Benshan,Shi Jiyang,et al.Evolution of organic matter and origin of sedimentary ore deposites[J].Acta Sedimentological Sinica,1983,1(3):41-58.[傅家谟,汪本善,史继扬,等.有机质演化与沉积矿床成因[J].沉积学报,1983,1(3):41-58.]
[9]Passey Q R,Bohacs K,Esch W L,et al.From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale gas reservoirs[C]//International Oil and Gas Conference and Exhibition in China.Texas:Society of Petroleum Engineers,2010.
[10]Milliken K L,Rudnicki M,Awwiller D N,et al.Organic matter-hosted pore system,Marcellus Formation(Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
[11]Tian H,Pan L,Xiao X,et al.A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N 2 adsorption and FE-SEM methods[J].Marine and Petroleum Geology,2013,48:8-19.
[12]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale gas assessment[J].AAPG Bulletin,2007,90(4):475-499.
[13]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[14]Fishman N,Guthrie J M,Honarpour M.Development of organic and inorganic porosity in the Cretaceous Eagle Ford Formation,South Texas[J].Search and Discovery,2014,50928.
[15]Hackley P C.Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation,Maverick Basin,south Texas:A future shale gas resource[J].AAPG Bulletin,2012,96(8):1449-1482.
[16]Mastalerz M,Schimmelmann A,Drobniak A,et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J].AAPG Bulletin,2013,97(10):1621-1643.
[17]Cardott B J,Landis C R,Curtis M E.Post-oil solid bitumen network in the Woodford shale,USA:A potential primary migration pathway[J].International Journal of Coal Geology,2015,139:106-113.
[18]Bernard S,Horsfield B,Schulz H M,et al.Geochemical evolution of organic-rich shales with increasing maturity:A STXM and TEM study of the Posidonia Shale(Lower Toarcian,northern Germany)[J].Marine and Petroleum Geology,2012,31(1):70-89.
[19]Bernard S,Wirth R,Schreiber A,et al.Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale(Fort Worth Basin)[J].International Journal of Coal Geology,2012,103:3-11.
[20]Jacob H.Classification,structure,genesis and practical importance of natural solid oil bitumen(“migrabitumen”)[J].International Journal of Coal Geology,1989,11(1):65-79.
[21]Curiale J A.Origin of solid bitumens,with emphasis on biological marker results[J].Organic Geochemistry,1986,10(1-3):559-580.
[22]Slatt R M,Philp P R,Abousleiman Y,et al.Pore-to-regional-scale integrated characterization workflow for unconventional gas shales[C]//Breyer J A.Shale reservoirs-Giant resources for the 21st century.Oklahoma:American Association of Petroleum Geologists,2012:127-150.
[23]Tilley B,Muehlenbachs K.Isotope reversals and universal stages and trends of gas maturation in sealed,self-contained petroleum systems[J].Chemical Geology,2013,339:194-204.
[24]Zumberge J E,Ferworn K A,Curtis J B.Gas character anomalies found in highly productive shale gas wells[J].Geochimica et Cosmochimica Acta Supplement,2009,73:1539-1556.
[25]Hao F,Zou H.Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales[J].Marine and Petroleum Geology,2013,44:1-12.
[26]Zumberge J,Ferworn K,Brown S.Isotopic reversal(‘rollover’)in shale gases produced from the Mississippian Barnett and Fayetteville Formations[J].Marine and Petroleum Geology,2012,31(1):43-52.
[27]Dai J,Zou C,Liao S,et al.Geochemistry of the extremely high thermal maturity Longmaxi shale gas,southern Sichuan Basin[J].Organic Geochemistry,2014,74:3-12.
[28]Burruss R C,Laughrey C D.Carbon and hydrogen isotopic reversals in deep basin gas:Evidence for limits to the stability of hydrocarbons[J].Organic Geochemistry,2010,41(12):1285-1296.
[29]Xia X,Chen J,Braun R,et al.Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J].Chemical Geology,2013,339:205-212.
[30]Schmoker J W,Hester T C.Formation resistivity as an indicator of the onset of oil generation in the Woodford Shale,Anadarko Basin,Oklahoma[C]//Johnson K S.Anadarko basin symposium.Oklahoma:Oklahoma Geological Survey,1989:262-266.
[31]Kreis L K,Costa A.Hydrocarbon potential of the Bakken and Torquay formations,southeastern Saskatchewan[C]//Saskatchewan Industry Resources.Saskatchewan:Saskatchewan Geological Survey,2006:118-137.
[32]Al Duhailan M A,Cumella S.Niobrara Maturity Goes Up,Resistivity Goes Down;What’s Going On[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference.Texas:Society of Petroleum Engineers,2014.
[33]Cumella S,Scheevel J.Mesaverde tight gas sandstone sourcing from underlying Mancos-Niobrara Shales[J].Search and Discovery,2012,10450.
[34]Newsham K E,Rushing J A,Chaouche A,et al.Laboratory and Field Observations of an Apparent Sub Capillary-Equilibrium Water Saturation Distribution in a Tight Gas Sand Reservoir[C]// SPE Gas Technology Symposium.Texas:Society of Petroleum Engineers,2002,75710:5-8.
[35]Vanorio T,Mukerji T,Mavko G.Emerging methodologies to characterize the rock physics properties of organic-rich shales[J].The Leading Edge,2008,27(6):780-787.
[36]Deng J,Tang G,Yan P.Microtexture,seismic rock physical properties and modeling of Longmaxi Formation shale[J].Chinese Journal of Geophysics-Chines Edition,2015,58(6):2123-2136.
[37]Sone H.Mechanical Properties of Shale Gas Reservoir Rock and Its Relation to the In-situ Stress Variation Observed in Shale Gas Reservoir[D].California:Stanford University,2012:1-247.
[38]Qin X,Han D,Zhao L.Rock physics modeling of organic-rich shales with different maturity levels[C]//2014 SEG Annual Meeting.Oklahoma:Society of Exploration Geophysicists,2014.

[1] 郭晓龙,李璇,李波,杨亚迪,江淑丽,许晶. #br# 利用多属性融合方法预测新疆滴西178井区梧桐沟组薄砂岩储层[J]. 天然气地球科学, 2018, 29(8): 1172-1180.
[2] 马德波,赵一民,张银涛,杨鹏飞,杨敏,李磊. 最大似然属性在断裂识别中的应用——以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例[J]. 天然气地球科学, 2018, 29(6): 817-825.
[3] 王圣柱, 吴倩倩, 宋梅远, 于洪洲, 张关龙 . 断裂带内部结构及其对油气运聚的控制作用——以准噶尔盆地北缘哈山构造带为例[J]. 天然气地球科学, 2018, 29(11): 1559-1567.
[4] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[5] 张林清,张会星,姜效典,徐玥,周海廷. 弹性参数反演与属性融合技术在“甜点”预测中的应用[J]. 天然气地球科学, 2017, 28(4): 582-589.
[6] 郭晓龙,李璇,代春萌,边海军,许旭华,许晶. 煤层气地球物理预测方法[J]. 天然气地球科学, 2017, 28(2): 287-295.
[7] 田兵,王琪,路仁兵,刘海泉,马晓峰,郝乐伟. 深水水道体系砂岩储层的地球物理综合预测技术及应用[J]. 天然气地球科学, 2017, 28(10): 1593-1600.
[8] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[9] 王杰,腾格尔,刘文汇,马亮帮,陶成,周圆圆,王萍,李超. 川西矿山梁下寒武统沥青脉油气生成时间的厘定——来自于固体沥青Re—Os同位素等时线年龄的证据[J]. 天然气地球科学, 2016, 27(7): 1290-1298.
[10] 陈志鹏,梁兴,张介辉,王高成,刘臣,李兆丰,邹辰. 昭通国家级示范区龙马溪组页岩气储层超压成因浅析[J]. 天然气地球科学, 2016, 27(3): 442-448.
[11] 管全中,董大忠,王淑芳,黄金亮,王玉满,张晨. 海相和陆相页岩储层微观结构差异性分析[J]. 天然气地球科学, 2016, 27(3): 524-531.
[12] 陈彬滔,潘树新,方乐华,张庆石,李成刚,梁苏娟. 松辽盆地齐家—古龙凹陷青山口组泥页岩层段储层特征[J]. 天然气地球科学, 2016, 27(2): 298-308.
[13] 尚校森,丁云宏,杨立峰,卢拥军,鄢雪梅,王永辉. 基于结构弱面及缝间干扰的页岩缝网压裂技术[J]. 天然气地球科学, 2016, 27(10): 1883-1891.
[14] 胡晓勇,张云龙,熊方明,林正燮,尹宏,胡有福,蒋其君. 塔里木盆地塔中地区良里塔格组礁滩体储层地震预测[J]. 天然气地球科学, 2015, 26(S2): 171-181.
[15] 王茂林,肖贤明,魏强,周秦. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许娟娟,蒋有录,朱建峰. 基于误差分析的ΔLogR技术在长岭龙凤山烃源岩评价中的应用[J]. 天然气地球科学, 2016, 27(10): 1869 -1877 .