天然气地球科学

• 天然气开发 • 上一篇    下一篇

重复压裂气井热—固耦合应力场拟三维模型

赵金洲,尹庆,李勇明,唐志娟   

  1. 西南石油大学,油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 收稿日期:2014-11-03 修回日期:2014-12-17 出版日期:2015-11-10 发布日期:2015-11-10
  • 通讯作者: 尹庆(1989-),男,四川彭州人,博士研究生,主要从事油气增产理论与新技术研究.E-mail:yinqing6525@163.com.
  • 作者简介:赵金洲(1962-),男,湖北仙桃人,教授,博士生导师,主要从事油气增产理论与新技术研究.E-mail:zhaojz@swpu.edu.cn.
  • 基金资助:

    国家自然科学基金(编号:51344005);国家科技重大专项(编号:2011ZX05014-006);新世纪优秀人才支持计划(编号:NCET-11-1062)联合资助.

A Pseudo-three-dimensional Model for Thermoelastic Stress Field around a Re-fractured Gas Well

ZHAO Jin-zhou,YIN Qing,LI Yong-ming,TANG Zhi-juan   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration,Southwest Petroleum University,[JP3]Chengdu 610500,China
  • Received:2014-11-03 Revised:2014-12-17 Online:2015-11-10 Published:2015-11-10

摘要:

初次人工裂缝周围的应力场变化是影响重复压裂气井裂缝转向的关键因素。为研究人工裂缝和低温液体热—固耦合作用下应力场的变化情况,采用位移不连续法(DDM)与热源函数理论,考虑远场地应力作用、缝内压力非均匀分布及热效应,建立了重复压裂气井热—固耦合拟三维模型并得到其半解析解,可用于重复压裂气井的裂缝扩展模拟,计算结果明确了压裂液注入后裂缝周围应力场的分布及参数的影响情况。模拟计算表明,垂直裂缝面方向最小水平主应力增加值与增加范围均大于最大水平主应力,使应力转向区主要分布在裂缝壁面附近,有利于应力场发生转向,但同时该区域的破裂压力也相应增加。压裂液的注入在裂缝周围产生了很小的张性应力,对新裂缝的起裂与转向帮助不大,应力重定向的关键影响因素是缝内净压力。因此,封堵初次裂缝尖端不仅能阻止新裂缝沿原裂缝方向延伸还能提高缝内净压力,为重复压裂气井的定向射孔及缝内暂堵技术提供了理论依据。

关键词: 重复压裂, 应力转向, 热固耦合, 位移不连续法, 热源函数

Abstract:

Stress field around a re-fractured gas well is the major factor that leads to the reorientation of hydraulic fractures.Considering in-situ stress,non-uniform distribution of net pressure and the thermal effect,a pseudo-three-dimensional model is developed via displacement discontinuity method and heat source function to analyze the changes of thermoelastic stress field around a re-fractured well,which can be used to simulate the fracture propagation.This paper clarifies the thermoelastic stress distribution around the primary fracture and elaborates the major influence factors.It implies that the increment of the minimum horizontal principal stress and its controlled area are both larger than that of maximum horizontal principal stress,resulting in stress-reverse region that emerges around primary fracture surfaces which is beneficial to fracture reorientation while the failure pressure increases at the same time.Furthermore,the simulation results show that only very small stresses can be induced by the cold-water injection and it plays a limited role in fracture re-orientation and propagation,which means that the thermal stresses induced by the cold-water can be ignored in the study of refracturing technology.It is also found that the net pressure is critical for stress redistribution.Therefore,temporary plugging technology applied in the crack tips can not only prevent the secondary fracture propagation along the primary fracture,but also increase the net pressure in the fracture.This paper provides a theoretical foundation for oriented perforating and temporary plugging technology in re-fractured gas well.

Key words: Refracturing, Stress reoreientation, Thermoelastic, Displacement discontinuity method, Heat source function

中图分类号: 

  • TE357.1

[1]Zheng Junwei,Yu Lin,Sun Deqiang.Main affecting factors and special technologies for exploration and exploitation of low-permeability oil and gas resources[J].Natural Gas Geoscience,2009,20(5):651-656.[郑军卫,庾凌,孙德强.低渗透油气资源勘探开发主要影响因素与特色技术[J].天然气地球科学,2009,20(5):651-656.]
[2]Shao Xianjie,Dong Xinxiu,Tang Dazhen,et al.Treatment technology and method of low-to-moderate production coalbed methane wells in Hancheng mining area[J].Natural Gas Geoscience,2014,25(3):435-443.[邵先杰,董新秀,汤达祯,等.韩城矿区煤层气中低产井治理技术与方法[J].天然气地球科学,2014,25(3):435-443.]
[3][ZK(3#]Bryant S A.Simulating Refracturing Treatments That Employ Diverting Agents on Horizontal Wells[D].Texas:The University of Texas at Austin,2013:51-54.
[4]Sneddon I N.The distribution of stress in the neighbourhood of a crack in an elastic solid[J].Mathematical and Physical Sciences,1946,187(1009):229-260.
[5]Roussel N P,Sharma M M.Optimizing fracture spacing and sequencing in horizontal-well fracturing[J].SPE Production & Operations,2011,26(2):173-184.
[6][JP3]Ai Chi,Zhao Wanchun,Jiao Shi.New methods for computing stress field around refracturing cracks[J].Oil Drilling & Production Technology,2008,30(1):63-66.[艾池,赵万春,焦石.重复压裂裂缝周围应力场计算新方法[J].石油钻采工艺,2008,30(1):63-66.]
[7]Ning Shuxia.Stress re-orientation around fracturing of re-fractured wells[J].Journal of Daqing Petroleum Institute,2007,31(4):37-40.[宁淑霞.重复压裂井裂缝周围应力的重定向[J].大庆石油学院学报,2007,31(4):37-40.]
[8]Xiao Yang,Wang Tengfei,Zhao Jinzhou,et al.Computation model of total stress field while multiple fracturing [J].Oil Drilling & Production Technology,2009,31(3):90-93.[肖阳,王腾飞,赵金洲,等.重复压裂总应力场计算模型[J].石油钻采工艺,2009,31(3):90-93.]
[9]Kocabas I.An analytical model of temperature and stress fields during cold-water injection into an oil reservoir[J].SPE Production and Operations,2006,21(2):282-292.
[10]Ghassemi A,Zhang Q.A transient fictitious stress boundary element method for porothermoelastic media[J].Engineering Analysis with Boundary Elements,2004,28(11):1363-1373.
[11]Ghassemi A,Zhang Q.Porothermoelastic analysis of the response of a stationary crack using the displacement discontinuity method[J].Journal of Engineering Mechanics,2006,132(1):26-33.
[12]Wang H.Theory of linear Poroelasticity with Applications to Geomechanics and Hydrogeology[M].Princeton:Princeton University Press,2000:24-25.
[13]Wang Fei.Displacement Discontinuity Method and Its Application in Rock Engineering[D].Shanghai:Shanghaijiao Tong University,2010:2-10.[王飞.位移不连续法及其在岩体工程中的应用[D].上海:上海交通大学,2010:2-10.]
[14]Crouch S L.Solution of plane elasticity problems by the displacement discontinuity method:I.Infinite body solution[J].International Journal for Numerical Methods in Engineering,1976,10(2):301-343.
[15]Zhao Jinzhou,Yang Hai,Li Yongming,et al.Stability of the natural fracture when the hydraulic fracture is approaching[J].Natural Gas Geoscience,2014,25(3):402-408.[赵金洲,杨海,李勇明,等.水力裂缝逼近时天然裂缝稳定性分析[J].天然气地球科学,2014,25(3):402-408.]
[16]Rinne M,Shen B,Backers T.Modelling fracture propagation and failure in a rock pillar under mechanical and thermal loadings[J].Journal of Rock Mechanics and Geotechnical Engineering,2013,5(1):73-83.
[17]Olson J E.Predicting fracture swarms:The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock[J].Geological Society,2004,231(1):73-88.
[18]Potapenko D I,Tinkham S K,Lecerf B,et al.Barnett shale refracture stimulations using a novel diversion Technique[C]//SPE Hydraulic Fracturing Technology Conference,19-21 January 2009,Texas.SPE 119636,Richardson:Society of Petroleum Engineers,2009.

[1] 徐加祥,丁云宏,杨立峰,王臻,刘哲,高睿. 基于扩展有限元的水力压裂缝间干扰及裂缝形态分析[J]. 天然气地球科学, 2018, 29(9): 1356-1363.
[2] 赵金洲,陈曦宇,刘长宇,李勇明,李晖,曹学军. 水平井分段多簇压裂缝间干扰影响分析[J]. 天然气地球科学, 2015, 26(3): 533-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兆旗,叶月明,庄锡进,陈见伟,张金陵. 层控网格层析速度建模技术在陆上盐丘区的应用[J]. 天然气地球科学, 2016, 27(11): 2070 -2076 .
[2] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190 -1197 .