天然气地球科学

• 天然气地质学 • 上一篇    下一篇

四川盆地五峰组—龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系

张瑜,闫建萍,贾祥娟,李艳芳,邵德勇,于萍,张同伟   

  1. 兰州大学地质科学与矿产资源学院&甘肃省西部矿产资源重点实验室,甘肃 兰州 730000
  • 收稿日期:2015-04-28 修回日期:2015-05-22 出版日期:2015-09-10 发布日期:2015-09-10
  • 通讯作者: 张同伟(1965-),男,甘肃武威人,教授,博士生导师,主要从事石油、天然气地质地球化学及成藏地球化学研究. E-mail:zhangtw@lzu.edu.cn.
  • 作者简介:张瑜(1989-),女,湖北宜昌人,硕士研究生,主要从事石油与天然气地球化学研究. E-mail:yuzhang13@lzu.edu.cn.
  • 基金资助:

    国家重点基础研究发展规划“973”项目(编号:2012CB214701);博士学科点专项科研基金(新教师)(编号:20120211120032);国家自然科学基金(编号:41202095)联合资助.

The Pore Size Distribution and Its Relationship with Shale Gas Capacity in Organic-rich Mudstone of Wufeng-Longmaxi Formation,Sichuan Basin

ZHANG Yu,YAN Jian-ping,JIA Xiang-juan,LI Yan-fang,SHAO De-yong,YU Ping,ZHANG Tong-wei   

  1. School of Earth Sciences & Key Laboratory of Western China′s Mineral Resources of Gansu Province, Lanzhou University,Lanzhou 730000,China
  • Received:2015-04-28 Revised:2015-05-22 Online:2015-09-10 Published:2015-09-10

摘要:

选取四川盆地长宁县双河镇上奥陶统五峰组—下志留统龙马溪组新鲜露头样品23个,渝东南黔浅1井岩心样品14个,运用氮气吸附法进行了孔径分布表征,并结合TOC、矿物组成含量和含气量在垂向上的变化及相关性分析,探讨了控制页岩孔隙发育的主要影响因素及其与页岩含气性的关系。结果表明:页岩孔隙以四周开放的具有平行板结构的狭缝孔为主,平均孔径为3.76~8.53nm,主体孔径以2~30nm的介孔为主。总体来看,BET比表面积和孔体积在五峰组—龙马溪组底部大,向上减小并趋于稳定,与TOC变化趋势一致,呈较好正相关性,表明有机质是控制龙马溪组页岩孔隙发育的主要因素。在TOC含量相近时,黏土矿物含量高的样品具有更大的比表面积,页岩中纳米孔隙的发育同时受黏土矿物的影响。四川盆地五峰组—龙马溪组底部TOC和脆性矿物含量高,有机孔发育,页岩含气性好,是页岩气储层压裂改造的优选层位。

关键词: 四川盆地, 页岩纳米孔隙, 氮气吸附, 含气性, 比表面积

Abstract:

Pore size distribution for 23 fresh outcrop shale samples collected from Shuanghe Town,Changning County and 14 core samples collected from the well Qianqian 1 in southeast Chongqing,Sichuan Basin were investigated by low pressure nitrogen adsorption.The main factors controlling pore development and gas accumulation in shales were discussed by integrating total organic carbon(TOC),mineralogy and shale gas content.The results show that open slit-like and parallel plate structure are major pore types with an average pore diameter of 3.76-8.53nm, and 2-30nm mesopores are dominated.The BET surface area and total pore volume are high in the Wufeng Formation and lower part of the Longmaxi Formation,and the decrease in the upper part of the Longmaxi Formation,in consistent with the trends of TOC,suggesting that organic matter is the key controlling factor on the shale pore development.In addition,samples with higher content of clay minerals but similar TOC content have larger specific surface area,and the clay-mineral-hosted pores are present.The Wufeng Formation and lower part of the Longmaxi Formation in the Sichuan Basin are preferred layers of shale reservoir fracturing because of high TOC,high rock brittleness and high gas content.

Key words: Sichuan Basin, Shale nanopore, Nitrogen adsorption, Gas capacity, Specific surface area

中图分类号: 

  • TE122.2
[1]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[2]Montgomery S L,Jarvie D M,Bowker K A,et al.Mississippian Barnett Shale,Fort Worth Basin,north-central Texas:Gas-shale play with multi-trillion cubic foot potential[J].AAPG Bulletin,2005,89(2):155-175.
[3]Ross D J K,Bustin R M.Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin:Application of an integrated formation evaluation[J].AAPG Bulletin,2008,92(1):87-125.
[4]Schettler Jr P D,Parmely C R.Contributions to total storage capacity in Devonian shales[C]//SPE Eastern Regional Meeting.Society of Petroleum Engineers,1991.
[5]Sondergeld C H,Ambrose R J,Rai C S,et al.Micro-structural studies of gas shales[C]//SPE Unconventional Gas Conference.Society of Petroleum Engineers,2010.
[6][JP2]Ross D J K,Marc Bustin R.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927.
[7]Milner M,McLin R,Petriello J.Imaging texture and porosity in mudstones and shales:Comparison of secondary and ion-milled backscatter SEM methods[C]//Canadian Unconventional Resources and International Petroleum Conference.Society of Petroleum Engineers,2010.
[8]Schieber J.Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-illustrated with examples across the Phanerozoic[C]//SPE Unconventional Gas Conference.Society of Petroleum Engineers,2010.
[9]Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[10][JP2]Rouquerol J,Avnir D,Fairbridge C W,et al.Recommendations for the characterization of porous solids(Technical Report)[J].Pure and Applied Chemistry,1994,66(8):1739-1758.
[11]Yang Y,Aplin A C.Influence of lithology and compaction on the pore size distribution and modelled permeability of some mudstones from the Norwegian margin[J].Marine and Petroleum Geology,1998,15(2):163-175.
[12]Zhang Xiaolong,Li Yanfang,Lv Haigang,et al.Relationship between organic matter characteristics and depositional environment in the Silurian Longmaxi Formation in Sichuan Basin[J].Journal of Coal Society,2013,38(5):850-856.[张小龙,李艳芳,吕海刚,等.四川盆地志留系龙马溪组有机质特征与沉积环境的关系[J].煤炭学报,2013,38(5):851-856.]
[13]Rouquerol J,Llewellyn P,Rouquerol F.Is the BET equation applicable to microporous adsorbents[J].Studies in surface science and catalysis,2007,(160):49-56.
[14]Heng Shanjin,Fu Jianxiuwen,Zuo Tengzhengzhao,et al.The chemical structure of asphaltene derived from coal hydrogenation:Secondary hydrogenation reaction of asphaltene[J].The Chemical Society of Japan,1992,71(1):25-33.[横山晋,福[FJF]间[FJJ]秀文,佐藤正昭,等.アスファルテンの化学構造から誘導された石炭:アスファルテン二次水素化反応[J].日本エネルギー学会誌,1992,71(1):25-33.]
[15][JP2]Llewellyn P L,Bourrelly S,Serre C,et al.High uptakes of CO2 and CH4 in mesoporous metal organic frameworks MIL-100 and MIL-101[J].Langmuir,2008,24(14):7245-7250.
[16][JP2]Labani M M,Rezaee R,Saeedi A,et al.Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption,gas expansion and mercury porosimetry:A case study from the Perth and Canning Basins,Western Australia[J].Journal of Petroleum Science and Engineering,2013,112:7-16.
[17]Slatt R M,Abousleiman Y.Merging sequence stratigraphy and geomechanics for unconventional gas shales[J].The Leading Edge,2011,30(3):274-282.
[18]Groen J C,Peffer L A A,Pérez-Ramírez J.Pore size determination in modified micro-and mesoporous materials.Pitfalls and limitations in gas adsorption data analysis[J].Microporous and Mesoporous Materials,2003,60(1):1-17.
[19]Pu Boling,Dong Dazhong,Er Chuang,et al.Favorable reservoir characteristics of the Longmaxi shale in the southern Sichuan Basin and their influencing factors[J].Natural Gas Industry,2013,33(12):41-47.[蒲泊伶,董大忠,耳闯,等.川南地区龙马溪组页岩有利储层发育特征及其影响因素[J].天然气工业,2013,33(12):41-47.]
[20]Maliva R G,Siever R.Diagenetic replacement controlled by force of crystallization[J].Geology,1988,16(8):688-691.
[21][JP2]Bi He,Jiang Zhenxue,Li Peng,et al.Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing[J].Narural Gas Geoscience,2014,25(2):302-310.[毕赫,姜振学,李鹏,等.渝东南地区龙马溪组页岩吸附特征及其影响因素[J].天然气地球科学,2014,25(2):302-310.]
[22]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[23]Blanc G,Bonneau S,Biagianti S,et al.Description of the larval stages of Anguillicola crassus(Nematoda,Dra-cunculoidea)using light and scanning electron microscopy[J].Aquatic Living Resources,1992,5(4):307-318.
[24]Tian H,Pan L,Xiao X,et al.A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N2 adsorption and FE-SEM methods[J].Marine and Petroleum Geology,2013,48:8-19.
[25]Yan Jianping,Zhang Tongwei,Li Yanfang,et al.Effect of the organic matter characteristics on methane adsorption in shale[J].Journal of Coal Society,2013,38(5):805-811.[闫建萍,张同伟,李艳芳,等.页岩有机质特征对甲烷吸附的影响[J].煤炭学报,2013,38(5):805-811.]
[26]Krishna R.Describing the diffusion of guest molecules inside porous structures[J].The Journal of Physical Chemistry C,2009,113(46):19756-19781.
[27]Xie Qingming,Chen Lijun,Liu Junfeng,et al.Well logging interpretation and evaluation of gas shale reservoir at Longmaxi Formation in Qianjiang area of Southeast of Chongqing area[J].Progress in Geophysics,2014(3):1312-1318.[谢庆明,程礼军,刘俊峰,等.渝东南黔江地区龙马溪组页岩气储层测井解释评价研究[J].地球物理学进展,2014(3):1312-1318.]
[1] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[2] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[3] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[4] 朱华, 杨光, 苑保国, 应丹琳, 戴鑫, 周红飞, 徐世琦, 谈健康. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1475-1485.
[5] 陈双,黄海平,张博原,谢增业. 原油及源内残余沥青裂解成气差异及地质意义[J]. 天然气地球科学, 2017, 28(9): 1375-1384.
[6] 贾成业,贾爱林,韩品龙,王建君,袁贺,乔辉. 四川盆地志留系龙马溪组优质页岩储层特征与开发评价[J]. 天然气地球科学, 2017, 28(9): 1406-1415.
[7] 张建勇,倪新峰,吴兴宁,李文正,郝毅,陈娅娜,吕学菊,谷明峰,田瀚,朱茂. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175.
[8] 沈安江,陈娅娜,潘立银,王龙,佘敏. 四川盆地下寒武统龙王庙组沉积相与储层分布预测研究[J]. 天然气地球科学, 2017, 28(8): 1176-1190.
[9] 张林,万玉金,杨洪志,苏云河,张满郎. 四川盆地高石梯构造灯影组四段溶蚀孔洞型储层类型及组合模式[J]. 天然气地球科学, 2017, 28(8): 1191-1198.
[10] 翟秀芬,汪泽成,罗平,王铜山,石书缘,张洪. 四川盆地高石梯东部地区震旦系灯影组微生物白云岩储层特征及成因[J]. 天然气地球科学, 2017, 28(8): 1199-1210.
[11] 张光荣,张旋,喻颐,张红英,廖奇,张福宏,赵艾琳,梁瀚. 四川盆地深层海相碳酸盐岩缝洞型储层预测关键技术——以SN地区茅口组为例[J]. 天然气地球科学, 2017, 28(8): 1235-1242.
[12] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[13] 何治亮,胡宗全,聂海宽,李双建,许锦. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学, 2017, 28(5): 724-733.
[14] 朱彤,俞凌杰,王烽. 四川盆地海相、湖相页岩气形成条件对比及开发策略[J]. 天然气地球科学, 2017, 28(4): 633-641.
[15] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 成永生;陈松岭;王海;藏锋;刘娟 . 渤海湾盆地乐亭凹陷下第三系含油气系统[J]. 天然气地球科学, 2007, 18(6): 854 -858 .
[2] 武芳芳 朱光有 王慧 张水昌 金强 顾乔元 张宝收 苏劲. 塔里木盆地塔中12构造复式油气运聚与成藏研究[J]. 天然气地球科学, 2009, 20(1): 76 -85 .
[3] 黄卫东, 李新宁, 李留中, 于法政, 王瑞英, 陈晓红, 苗殿国. 三塘湖盆地煤层气资源勘探前景分析[J]. 天然气地球科学, 2011, 22(4): 733 -737 .
[4] 盛秀杰,金之钧,王义刚,肖晔. 融合不同地质场景假设的油气区带及圈闭资源量计算方法[J]. 天然气地球科学, 2015, 26(3): 456 -465 .
[5] 王玉满,李新景,董大忠,张晨晨,王淑芳,黄金亮,管全中. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602 -1610 .
[6] 裴立新,刚文哲,朱传真,刘亚洲,何文军,向宝力,董岩. 准噶尔盆地烷烃气碳同位素组成及来源[J]. 天然气地球科学, 2018, 29(7): 1020 -1030 .
[7] 李红哲,马峰,谢梅,杨巍,张成娟,王朴,赵健. 柴达木盆地阿尔金东段基岩气藏盖层特征及控藏机制#br# [J]. 天然气地球科学, 2018, 29(8): 1102 -1110 .
[8] 李滔,李闽,张烈辉,田山川,赵潇雨,郑玲丽. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29(8): 1181 -1189 .