天然气地球科学

• 天然气地质学 • 上一篇    下一篇

可溶有机质对表征页岩储层特性的影响

潘磊,肖贤明,周秦   

  1. 1.中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广东 广州 510640;
    2.中国科学院大学,北京 100049
  • 收稿日期:2015-04-28 修回日期:2015-05-22 出版日期:2015-09-10 发布日期:2015-09-10
  • 通讯作者: 肖贤明(1962-),男,湖南汉寿人,研究员,博士,博士生导师,主要从事油气地质地球化学研究. E-mail:xmxiao@gig.ac.cn.
  • 作者简介:潘磊(1987-),男,四川资中人,博士研究生,主要从事油气地球化学研究. E-mail:panlei672057@126.com.
  • 基金资助:

    国家重点基础研究发展计划("973”)项目(编号:2012CB214705);国家自然科学基金(编号:41321002);中国科学院战略性先导科技专项B(编号:XDB10040300)联合资助.

Influence of Soluble Organic Matter on Characterization of Shale Reservoir

PAN Lei,XIAO Xian-ming,ZHOU Qin   

  1. 1.State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy
    of Sciences,Guangzhou 510640,China;2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2015-04-28 Revised:2015-05-22 Online:2015-09-10 Published:2015-09-10

摘要:

成熟度处于“生油窗”范围的页岩含有一定数量的残余可溶有机质,其对页岩储层特性的表征具有重要影响。对取自四川盆地西北缘的2件上二叠统大隆组页岩,采用二氯甲烷与三氯甲烷进行了抽提处理,对去除可溶有机质前、后的页岩开展了有机地球化学、矿物组成、孔隙结构(比表面积、孔容)等储层特性对比研究。结果表明:抽提后样品的TOCS1S2IH等热解参数呈现降低的趋势,但其矿物组分没有变化,保持了页岩原有孔隙结构特征。可溶有机质占据一定孔隙空间,阻碍了孔隙间的连通性。抽提后的页岩测定的比表面积和孔容变大。页岩样品中残余可溶有机质主要分布于微孔及较小的介孔中,并受成熟度水平的制约。对于低成熟度页岩样品,可溶有机质主要赋存于小于5nm有机质孔隙中。对于中等成熟度页岩样品,微孔及小于20nm介孔成为主要的储集空间。

关键词: 可溶有机质, 页岩油气, 储层特性, 孔隙结构

Abstract:

Shale with a maturity within “oil window” contains a certain amount of residual soluble organic matter.This soluble organic matter will have an important influence on the characterization of shale reservoir.In this study,two shale samples were collected from the Upper Permian Dalong Formation in the northwestern margin of Sichuan Basin.Their geochemistry,mineral composition,pore structure(surface area and pore volume)were investigated before and after removing soluble organic matter(SOM)by the extraction with dichloromethane or trichloromethane.The results show that the TOC,S1,S2,and IH of the extracted samples decrease obviously,but the mineral composition has no significant change as compared with their raw samples,thus the original pore structure is thought to be unaltered from the extraction.SOM occupies pore volume and hinders pore connectivity,and the extraction greatly increases the surface area and pore volume of the samples.The residual SOM in the shale samples occur mainly in the micropore and small mesopore,and their occupied pore size range seems being constrained by the maturity.For the shale samples with lower maturity,SOM is mainly hosted in organic pores with diameter less than 5nm.For the  shale samples with moderate maturity,micropores and some mesopores ranging between 2nm and 20nm are the main storage space for the SOM.

Key words: Soluble organic matter, Shale oil and gas, Reservoir characteristic, Pores structure

中图分类号: 

  • TE122.2

[1]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[2]Strapoc D,Mastalerz M,Schimmelmann A,et al.Geochemical constraints on the origin and volume of gas in the New Albany Shale(Devonian-Mississippian),eastern Illinois Basin[J].AAPG Bulletin,2010,94(11):1713-1740.
[3]Lucier A M,Hofmann R,Bryndzia L T.Evaluation of variable gas saturation on acoustic log data from the Haynesville Shale gas play,NW Louisiana,USA[J].The Leading Edge,2011,30(3):300-311.
[4]Xiao Xianming,Song Zhiguang,Zhu Yanming,et al.Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area[J].Journal of China Coal Society,2013,38(5):721-727.[肖贤明,宋之光,朱炎铭,等.北美页岩气研究及对我国下古生界页岩气开发的启示[J].煤炭学报,2013,38(5):721-727.]
[5]Huang J L,Zou C N,Li J Z,et al.Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in the southern Sichuan Basin,China[J].Petroleum Exploration and Development,2012,39(1):75-81.
[6]Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteritics,formation mechanism andresource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.[邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.]
[7]Zhao Pei,Li Xianqing,Tian Xingwang,et al.Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J].Natural Gas Geoscience,2014,25(6):947-956.[赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层孔隙结构特征[J].天然气地球科学,2014,25(6):947-956.]
[8]Wang F Y,Guan J,Feng W P,et al.Evolution of overmature marine shale porosity and implication to the free gas volume[J].Petroleum Exploration and Development,2013,40(6):819-824.
[9]Tian H,Pan L,Xiao X M,et al.A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N2 adsorption and FE-SEM methods[J].Marine and Petroleum Geology,2013,48:8-19.
[10]Liang Digang,Guo Tonglou,Chen Jianping,et al.Some progressed on studies of hydrocarbon generation and accumulation in marine sedimentary regions,southern China(Part 1):Distribution of four suits of regional marine source rocks[J].Marine Origin Petroleum Geology,2008,13(2):1-16.[梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J].海相油气地质,2008,13(2):1-16.]
[11]Pan L,Xiao X M,Tian H,et al.A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region,eastern China[J].International Journal of Coal Geology,2015,146:68-78.
[12]Luo Jinxiong,He Youbin.Characteristics of the Permian source rocks in the Middle and Upper Yangtze region[J].Natural Gas Geoscience,2014,25(9):1416-1425.[罗进雄,何有斌.中上扬子地区二叠系烃源岩特征[J].天然气地球科学,2014,25(9):1416-1425.]
[13]Chen J,Xiao X M.Evolution of nanoporosity in organic-rich shales during thermal maturation[J].Fuel,2014,129:173-181.
[14]Furmann A,Mastalerz M,Brassell S C,et al.Extractability of biomarkers from high-and low-vitrinite coals and its effect on the porosity of coal[J].International Journal of coal Geology,2013,107:141-151.
[15]Yang Yongliang,Li Zenghua,Ji Huaijun,et al.Effect of soluble organic matter in coal on its pore structure and methane sorption characteristics[J].Journal of Fuel Chemistry and Technology,2013,41(4):385-390.[杨永良,李增华,季淮军,等.煤中可溶有机质对煤的孔隙结构及甲烷吸附特性影响[J].燃料化学学报,2013,41(4):385-390.]
[16]Lu Xiancai,Hu Wenxuan,Fu Qi,et al.Study of combination pattern of soluble organic matter and clay minerals in the immature source rocks in Gongying Depression,China[J].Scientia Geologica Sinica,1999,34(1):69-77.[陆现彩,胡文宣,符琦,等.烃源岩中可溶有机质与粘土矿物结合关系——以东营凹陷沙四段低熟烃源岩为例[J].地质科学,1999,34(1):69-77.]
[17]Lin W,Mastalerz M,Schimmelmann A,et al.Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales[J].International Journal of Coal Geology,2014,132:38-50.
[18]Ross D J K,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26:916-927.
[19]Mastalerz M,Schimmelmann A,Drobniak A,et al.Porosity of devonian and mississippian new albany shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J].AAPG Bulletin,2013,97(10):1621-1643.
[20]Zhu X J,Cai J G,Xu X Y,et al.Discussion on the method for determining BET specific surface area in argillaceous source rocks[J].Marine and Petroleum Geology,2013,48:124-129.
[21]Chalmers G R,Bustin R M,Power I M.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96(6):1099-1119.
[22]Curtis M E,Cardott B J,Sondergeld C H,et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103:26-31.
[23]Dai S F,Zou J H,Jiang Y F,et al.Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine,Daqingshan Coalfield,Inner Mongolia,China:Modes of occurrence and origin of diaspore,gorceixite,and ammonian illite[J].International Journal of Coal Geology,2012,94:250-270.
[24]Chalmers G R,Bustin R M.Lower Cretaceous gas shales in northeastern British Columbia,Part Ⅰ:Geological controls on methane sorption capacity[J].Bulletin of Canadian Petroleum Geology,2008,56:1-21.
[25]Garrido J,Linares-Solano A,Mardn-Mardnez J M,et al.Use of N2 vs.CO2 in the characterization of activated carbons[J].Langmuir,1987,3(1):76-81.
[26]Hubert D J,Marjo C M H.Adsorption of CO2 and N2 on soil organic matter:Nature of porosity,surface area,and diffusion mechanisms[J].Environmental Science and Technology,1996,30(2):408-413.
[27]Dubinin M M.Fundamentals of the theory of adsorption in micropores of carbon adsorbents:Characteristics of their adsorption properties and microporous structures[J].Carbon,1989,27(3):457-467.
[28]Bae J S,Bhatia S K.High-pressure adsorption of methane and carbon dioxide on coal[J].Energy & Fuels,2006,20:2599-2607.
[29]Brunauer S,Emmett P H,Teller E.Adsorption of Gases in Multimolecular Layers[J].Journal of the American Chemical Society,1938,60(2):309-319.
[30]Gregg,S J,Sing,K S W.Adsorption,Surface Area and Porosity[M].2nd edition.New York:Academic Press,1982:1-303.
[31]Sing K S W,Everett D H,Haul R A W,et al.Reporting physisorption data for gas/sold systems with special reference to the determination of surface area and porosity[J].Pure and Applied Chemistry,1985,57:603-619.
[32]Gan H,Nandi S P,Walker Jr P L.Nature of the porosity in American coals[J].Fuel,1972,51(4):272-277.
[33]Clarkson C R,Bustin R M.Variation in micropore capacity and size distribution with composition in bituminous coal of the western Canadian sedimentary basin[J].Fuel,1996,75(13):1483-1498.
[34]Rietveld H M.Line profiles of neutron powder diffraction peaks for structure refinement[J].Acta Crystallographica,1967,22:151-152.
[35]Zhou Qin,Tian Hui,Chen Guihua,et al.Geological model of dissolved gas in pore water of gas shale and its controlling factors[J].Journal of China Coal Society,2013,38(5):800-804.[周秦,田辉,陈桂华,等.页岩孔隙水中溶解气的主控因素与地质模型[J].煤炭学报,2013,38(5):800-804.]

[1] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[3] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
[4] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[5] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[6] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[7] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[8] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[9] 黄玉龙,刘春生,张晶晶,高有峰. 松辽盆地白垩系火山岩气藏有效储层特征及成因[J]. 天然气地球科学, 2017, 28(3): 420-428.
[10] 马明,陈国俊,李超,张功成,晏英凯,赵钊,沈怀磊. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征[J]. 天然气地球科学, 2017, 28(10): 1515-1526.
[11] 李凤丽,姜波,宋昱,汤政. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学, 2017, 28(1): 173-182.
[12] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[13] 刘晓鹏,刘燕,陈娟萍,胡爱平. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.
[14] 李超正,柳广弟,曹喆,牛子铖,牛小兵,王朋,张梦媛,张凯迪. 鄂尔多斯盆地陇东地区长7段致密砂岩微孔隙特征[J]. 天然气地球科学, 2016, 27(7): 1235-1247.
[15] 吴浩,刘锐娥,纪友亮,张春林,周勇,张云钊. 典型致密砂岩气储层孔隙结构分类及其意义——以鄂尔多斯盆地盒8段为例[J]. 天然气地球科学, 2016, 27(5): 835-843.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!