天然气地球科学

• 非常规天然气 • 上一篇    下一篇

基于压汞法无烟煤孔隙结构的粒度效应

陈义林,秦勇,田华,唐家祥   

  1. 1.中国矿业大学煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221008;
    2.中国矿业大学资源与地球科学学院,江苏 徐州 221116;3.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2014-10-27 修回日期:2015-04-01 出版日期:2015-09-10 发布日期:2015-09-10
  • 作者简介:陈义林(1985-),男,福建云霄人,讲师,博士,主要从事煤层气地质研究. E-mail:1chenyilin2@163.com.
  • 基金资助:

    国家自然科学基金重点资助项目(编号:U1361207);国家科技重大专项资助项目(编号:2011ZX05034);江苏高校优势学科建设工程资助项目;中国石油勘探开发研究院院级项目(编号:2012Y-062);国家重大科学仪器设备开发专项(编号:2013YQ17046305)联合资助.

Particle Size Effect of Pore Structure of Anthracite by Mercury Porosimetry

CHEN Yi-lin,QIN Yong,TIAN Hua,TANG Jia-xiang   

  1. 1.Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education
    (China University of Mining and Technology),Xuzhou 221008,China;2.School of Resources and Earth Science,
    China University of Mining and Technology,Xuzhou 221116,China;
    3.Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China
  • Received:2014-10-27 Revised:2015-04-01 Online:2015-09-10 Published:2015-09-10

摘要:

不同粒度对压汞法孔隙结构测定结果的影响称为粒度效应,其可影响煤孔径分布的测定。结合粒度测试和扫描电镜观察等方法,通过开展2组无烟煤5个不同粒度系列的压汞实验,分析不同粒度孔隙结构的差异。结果显示:①随着粒度变小,总孔容增量不断增大,中—大孔的孔容和孔比表面积增量最显著,孔容和孔比表面积的展布特征由单峰态变为双峰态;②随着粒度变小,退汞率显著降低。研究认为,煤颗粒的大孔增量并非真实存在的煤中孔隙,主要为颗粒间空隙所贡献。粒度变小导致孤立形式的封闭胞腔孔和气孔得到有效释放。煤颗粒退汞结束后大部分水银仍滞留于颗粒间空隙,由此造成低退汞率的假象,煤颗粒的退汞率不能指示孔隙连通性。当煤粒径大于3mm时,基于压汞法孔隙结构的粒度效应才可忽略不计。

关键词: 压汞法, 无烟煤, 孔隙结构, 粒度效应

Abstract:

Particle size effect,which is the influence of coal particle size on the mercury porosimetry mesurement of coal powder,may lead to incorrect interpretation.It′s necessary to pay attention to particle size effect for recognizing the pore structure of coal.Mercury porosimetry experiment was conducted with two groups of anthracite in five different particle sizes,which were 2-3cm,40-50 mesh,90-100 mesh,140-200 mesh and >200 mesh respectively,combined with particle size measurement and SEM observation.With the decrease of particle size,the total pore volume increases,especially the increment of pore volume and specific surface area between mesopore and macropore.The pore size distribution and specific surface area distribution change from unimodal distribution to double hump distribution.The increased macropore volume is not interior pores.With the decrease of particle size,mercury extrusion efficiency significantly reduces.The smaller the coal samples were crushed,the more closed pores were released.Most mercury is stranded in interparticle voids of coal powder after mercury withdrawal,which leads to the incorrect appearance of low extrusion efficiency,and can′t indicate the connection of pores.When coal particle size is bigger than 3mm,particle size effect of pore structure by mercury porosimetry can be neglected.

Key words: Mercury porosimetry, Anthracite, Pore structure, Particle size effect

中图分类号: 

  • TE122.2

[1]Zwietering P,Van Krevelen D W.Chemical structure and properties of coal Ⅳ-Pore structure[J].Fuel,1954,33(3):331-337.
[2]Mayer R P,Stowe R A.Mercury porosimetry:Filling of toroidal void volume following breakthrough between packed spheres[J].The Journal of Physical Chemistry,1966,70(12):3867-3873.
[3]Toda Y,Toyoda S.Application of mercury porosimetry to coal[J].Fuel,1972,51(3):199-201.
[4]Gan H,Nandi S P,Walker Jr P L.Nature of the porosity in American coals[J].Fuel,1972,51(4):272-277.
[5]Bager D H,Sellevold E J.Mercury porosimetry of hardened cement paste:The influence of particle size[J].Cement and Concrete Research,1975,5(2):171-177.
[6]Van Brakel J,Modry S,Svata M.Mercury porosimetry:State of the art[J].Powder Technology,1981,29(1):1-12.
[7]Ng S H,Fung D P C,Kim S D.Some physical properties of Canadian coals and their effects on coal reactivity[J].Fuel,1984,63(11):1564-1569.
[8]Smith D M,Stermer D L.Mercury porosimetry:Theoretical and experimental characterization of random microsphere packings[J].Journal of Colloid and Interface Science,1986,111(1):160-168.
[9]Smith D M,Schentrup S.Mercury porosimetry of fine particles:Particle interaction and compression effects[J].Powder Technology,1987,49(3):241-247.
[10]Deevi S C,Suuberg E M.Physical changes accompanying drying of western US lignites[J].Fuel,1987,66(4):454-460.
[11]Friesen W I,Ogunsola O I.Mercury porosimetry of upgraded western Canadian coals[J].Fuel,1995,74(4):604-609.
[12]Stanmore B R,He Y,White E T,et al.Porosity and water retention in coarse coking coal[J].Fuel,1997,76(3):215-222.
[13]León y León C A.New perspectives in mercury porosimetry[J].Advances in Colloid and Interface Science,1998,76-77:341-372.
[14]Mattsson S,Nystróm C.The use of mercury porosimetry in assessing the effect of different binders on the pore structure and bonding properties of tablets[J].European Journal of Pharmaceutics and Biopharmaceutics,2001,52(2):237-247.
[15]Liu Changjiang.Experimental Research on Structure Evolution and Element Migration of Coal Reservoir Associated with CO2 Geological Storage[D].Xuzhou:China University of Mining and Technology,2010:34-55.[刘长江.CO2 地质储存煤储层结构演化与元素迁移的模拟实验研究[D].徐州:中国矿业大学,2010:34-55.]
[16]Chen Yilin.Abnormal Concentration and Origin of Heavy Hydrocarbon in Anthracite Based on Refined Desorption Process[D].Xuzhou:China University of Mining and Technology,2014:115-125.[陈义林.基于精细解吸过程的无烟煤重烃浓度异常及其成因探讨[D].徐州:中国矿业大学,2014:115-125.]
[17]Deevi S C,Suuberg E M.Physical changes accompanying drying of western US lignites[J].Fuel,1987,66(4):454-460.
[18]Zhang Xinmin,Zhang Sui′an,Zhong Lingwen,et al.Coalbed Methane in China[M].Xi′an:Shanxi Science and Technology Press,1991:1-40.[张新民,张遂安,钟玲文,等.中国的煤层甲烷[M].西安:陕西科学技术出版社,1991:1-40.]
[19]Wu Jun,Jin Kuili,Tong Youde,et al.Theory of coal pores and its application in evaluation of gas outburst proneness and gas drainage[J].Journal of China Coal Society,1991,16(3):86-95.[吴俊,金奎励,童有德,等.煤孔隙理论及在瓦斯突出和抽放评价中的应用[J].煤炭学报,1991,16(3):86-95.]
[20]Wang Yi,Zhao Yangsheng,Feng Zengzhao.Study of evolution characteristics of pore structure during flame coal pyrolysis[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(9):1859-1866.[王毅,赵阳升,冯增朝.长焰煤热解过程中孔隙结构演化特征研究[J].岩石力学与工程学报,2010,29(9):1859-1866.]
[21]Meng Qiaorong,Zhao Yangsheng,Hu Yaoqing,et al.Experimental study on pore structure and pore shape of coking coal[J].Journal of China Coal Society,2011,36(3):487-490.[孟巧荣,赵阳升,胡耀青,等.焦煤孔隙结构形态的实验研究[J].煤炭学报,2011,36(3):487-490.]
[22]Friesen W I,Mikula R J.Mercury porosimetry of coals:Pore volume distribution and compressibility[J].Fuel,1988,67(11):1516-1520.
[23]Qin Yong.Micropetrology and Structural Evolution of High-bank Coals in P.R.China[M].Xuzhou:China University of Mining and Technology Press,1994:12.[秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994:12.]
[24]Fu Xuehai,Qin Yong,Wei Chongtao.Coalbed Methane Geology[M].Xuzhou:China University of Mining and Technology Press,2007:41.[傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007:41.]
[25]Liu Gaofeng,Zhang Ziwu,Zhang Xiaodong,et al.Pore distribution regularity and absorption-desorption characteristics of gas coal and coking coal[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1587-1592.[刘高峰,张子戌,张小东,等.气肥煤与焦煤的孔隙分布规律及其吸附—解吸特征[J].岩石力学与工程学报,2009,28(8):1587-1592.]
[26]Zhou Longgang,Wu Caifang.Pore characteristics of the main coal seams in Bide-Santang Basin in western Guizhou Province[J].Journal of China Coal Society,2012,37(11):1878-1884.[周龙刚,吴财芳.黔西比德—三塘盆地主采煤层孔隙特征[J].煤炭学报,2012,37(11):1878-1884.]
[27]Huang Zhenkai,Chen Jianping,Wang Yijun,et al.Pore distribution of source rocks as reavealed by gas adsorption and mercury injection methods:A case study on the first member of the cretaceous Qingshankou Formation in the Songliao Basin[J].Geological Review,2013,59(3):587-595.[黄振凯,陈建平,王义军,等.利用气体吸附法和压汞法研究烃源岩孔隙分布特征——以松辽盆地白垩系青山口组一段为例[J].地质论评,2013,59(3):587-595.]
[28]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J].Acta Petrolei Sinica,2012,33(3):419-427.[田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.]
[29]Xia Daping,Guo Hongyu,Ma Junqiang,et al.Impact of biogenic methane metabolism on pore structure of coals[J].Natural Gas Geoscience,2014,25(7):1097-1102.[夏大平,郭红玉,马俊强,等.生物甲烷代谢对煤孔隙结构的影响[J].天然气地球科学,2014,25(7):1097-1102.]
[30]Zhang S,Tang S,Tang D,et al.The characteristics of coal reservoir pores and coal facies in Liulin district,Hedong coal field of China[J].International Journal of Coal Geology,2010,81(2):117-127.
[31]Zhang Xiaodong,Sang Shuxun,Qin Yong,et al.Isotherm adsorption of coal samples with different grain size[J].Journal of China University of Mining & Technology,2005,34(4):427-432.[张晓东,桑树勋,秦勇,等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报,2005,34(4):427-432.]
[32]Zhang Xiaodong,Miao Shulei,Wang Bo,et al.Pores response of structural difference of coal body and its influence mechanism[J].Journal of Henan Polytechnic University:Natural Science,2013,32(2):125-130.[张小东,苗书雷,王勃,等.煤体结构差异的孔隙响应及其控制机理[J].河南理工大学学报:自然科学版,2013,32(2):125-130.]
[33]Ходот В В.Coal and Gas Outburst[M].Song Shizhao,Wang You′an,translation.Beijing:China Industry Press,1966:27-30.[霍多特B B.煤与瓦斯突出[M].宋士钊,王佑安,译.北京:中国工业出版社,1966:27-30.]
[34]Luo Zhetan,Wang Yuncheng.Pore Structure of Oil and Gas Reservoir[M].Beijing:Science Press,1986:138.[罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:138.]
[35]Yuan Haihan,Zhao Yuping,Yuan Ye.An analysis on “double hump distribution of intrusive” mercury curve[J].Acta Petrolei Sinica,1999,20(4):61-68.[原海涵,赵玉萍,原野.压汞曲线“双峰态”性质的分析[J].石油学报,1999,20(4):61-68.]
[36]Lü Zhifa,Zhang Xinmin,Zhong Lingwen,et al.The pore features of lump loal and its influence factors[J].Journal of China University of Mining & Technology,1991,20(3):45-54.[吕志发,张新民,钟铃文,等.块煤的孔隙特征及其影响因素[J].中国矿业大学学报,1991,20(3):45-54.]
[37]Tang Shuheng,Cai Chao,Zhu Baocun,et al.Control effect of coal metamorphic degree on physical properties of coal reservoirs[J].Natural Gas Industry,2008,28(12):30-33.[唐书恒,蔡超,朱宝存,等.煤变质程度对煤储层物性的控制作用[J].天然气工业,2008,28(12):30-33.]
[38]Alexeev A D,Vasilenko T A,Ulyanova E V.Closed porosity in fossil coals[J].Fuel,1999,78(6):635-638.
[39]Dai Jinxing,Qi Houfa.Gas pores in coal measures and their significance in gas exploration[J].Chinese Science Bulletin,1982,27(5):298-301.[戴金星,戚厚发.我国煤中发现的气孔及其在天然气勘探上的意义[J].科学通报,1982,27(5):298-301.]
[40]Ji Liming,Luo Peng.Effect of sample size on volumetric determination of methane adsorption in clay minerals[J].Natural Gas Geoscience,2012,23(3):535-540.[吉利明,罗鹏.样品粒度对黏土矿物甲烷吸附容量测定的影响[J].天然气地球科学,2012,23(3):535-540.]
[41]Zhang Tianjun,Xu Hongjie,Li Shugang,et al.The effect of particle size on adsorption of methane on coal[J].Journal of Hunan University of Science & Technology:Natural Science Edition,2009,24(1):9-12.[张天军,许鸿杰,李树刚,等.粒径大小对煤吸附甲烷的影响[J].湖南科技大学学报:自然科学版,2009,24(1):9-12.]
[42]Zhang Zhenbin,Qiu Xiaolong,Yuan Yueqin,et al.Experimental study on methane adsorption of coal bed from Sihe mine in Qinshui Basin[J].Petroleum Geology & Experiment,2014,36(5):656-658.[张振兵,邱小龙,袁月琴,等.沁水盆地寺河煤矿煤岩吸附甲烷规律实验研究[J].石油实验地质,2014,36(5):656-658.]
[43]Ritter H L,Drake L C.Pore-size distribution in porous materials.Pressure porosimeter and determination of complete macropore-size distributions[J].Industrial and Engineering Chemistry Analytical Edition,1945,17(12):782-786.
[44]Han Dexin,Ren Deyi,Wang Yanbin,et al.Coal Petrology of China[M].Xuzhou:China University of Mining and Technology Press,1995:391-398.[韩德馨,任德贻,王延斌,等.中国煤岩学[M].徐州:中国矿业大学出版社,1995:391-398.]
[45]Wang You′an,Yang Sijing.Some characteristics of coal seams with hazard of outburst[J].Journal of China Coal Society,1980,5(1):47-53.[王佑安,杨思敬.煤和瓦斯突出危险煤层的某些特征[J].煤炭学报,1980,5(1):47-53.]
[46]Liu Changhong.Experimental study on pore structural characteristics of coal[J].Coal Mine Safety,1993(8):1-5.[刘常洪.煤孔结构特征的试验研究[J].煤矿安全,1993(8):1-5.]
[47]Yao Duoxi,Lü Jin.Study on pority of coal from the Xieyi mine,Huainan[J].Coal Geology of China,1996,8(4):31-33.[姚多喜,吕劲.淮南谢一矿煤的孔隙性研究[J].中国煤田地质,1996,8(4):31-33.]
[48]Zhang Jing,Yu Bing,Tang Jiaxiang.Pore structure of coal seams with proneness of outburst[J].Coal Geology of China,1996,8(2):71-74.[张井,于冰,唐家祥.瓦斯突出煤层的孔隙结构研究[J].中国煤田地质,1996,8(2):71-74.]
[49]Li H,Ogawa Y,Shimada S.Mechanism of methane flow through sheared coals and its role on methane recovery[J].Fuel,2003,82(10):1271-1279.
[50]Hu Guangqing,Jiang Bo,Chen Fei,et al.Study on different type structure coal features and gas outburst control[J].Coal Science and Technology,2012,40(2):111-115.[胡广青,姜波,陈飞,等.不同类型构造煤特性及其对瓦斯突出的控制研究[J].煤炭科学技术,2012,40(2):111-115.]
[51][JP2]Li Ming,Jiang Bo,Lan Fengjuan,et al.Pore structures and structural control of coals with different degrees of deformation from western Guizhou and eastern Yunnan[J].Geological Journal of China Universities,2012,18(3):533-538.[李明,姜波,兰凤娟,等.黔西—滇东地区不同变形程度煤的孔隙结构及其构造控制效应[J].高校地质学报,2012,18(3):533-538.]
[52]Zhang Xiaodong,Liu Hao,Liu Yanhao,et al.Adsorption respondence of different coal body structures and its influence mechanism[J].Earth Science Journal of China University of Geosciences,2009,34(5):848-854.[张小东,刘浩,刘炎昊,等.煤体结构差异的吸附响应及其控制机理[J].中国地质大学学报:地球科学,2009,34(5):848-854.]

[1] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[3] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[4] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[5] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[6] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[7] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[8] 黄玉龙,刘春生,张晶晶,高有峰. 松辽盆地白垩系火山岩气藏有效储层特征及成因[J]. 天然气地球科学, 2017, 28(3): 420-428.
[9] 马明,陈国俊,李超,张功成,晏英凯,赵钊,沈怀磊. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征[J]. 天然气地球科学, 2017, 28(10): 1515-1526.
[10] 李凤丽,姜波,宋昱,汤政. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学, 2017, 28(1): 173-182.
[11] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[12] 刘晓鹏,刘燕,陈娟萍,胡爱平. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.
[13] 李超正,柳广弟,曹喆,牛子铖,牛小兵,王朋,张梦媛,张凯迪. 鄂尔多斯盆地陇东地区长7段致密砂岩微孔隙特征[J]. 天然气地球科学, 2016, 27(7): 1235-1247.
[14] 吴浩,刘锐娥,纪友亮,张春林,周勇,张云钊. 典型致密砂岩气储层孔隙结构分类及其意义——以鄂尔多斯盆地盒8段为例[J]. 天然气地球科学, 2016, 27(5): 835-843.
[15] 俞雨溪,罗晓容,雷裕红,程明,王香增,张丽霞,姜呈馥,尹锦涛,张立宽. 陆相页岩孔隙结构特征研究——以鄂尔多斯盆地延长组页岩为例[J]. 天然气地球科学, 2016, 27(4): 716-726.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!