天然气地球科学

• 非常规天然气 • 上一篇    下一篇

中上扬子区海相页岩气储层孔隙结构非均质性特征

陈尚斌,秦勇,王阳,张寒,左兆喜   

  1. 1.中国矿业大学煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221116;
    2.中国矿业大学资源与地球科学学院,江苏 徐州 221116
  • 收稿日期:2015-04-30 修回日期:2015-05-22 出版日期:2015-08-10 发布日期:2015-08-10
  • 作者简介:陈尚斌(1983-),男,甘肃通渭人,副教授,硕士生导师,主要从事页岩气地质研究.E-mail:chenshangbincumt@126.com.
  • 基金资助:

    国家重点基础研究发展计划项目(编号:2012CB214702);国家自然科学基金项目(编号:41402124);中国博士后科学基金(编号:2014M551684)联合资助.

Pore Structure and Heterogeneity of Marine Shales in the Middle-Upper Yangtze

CHEN Shang-bin,QIN Yong,WANG Yang,ZHANG Han,ZUO Zhao-xi   

  1. 1.Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry
    of Education,China University of Mining and Technology,Xuzhou 221116,China;2.School of Resources
    and Earth Science,China University of Mining and Technology,Xuzhou 221116,China
  • Received:2015-04-30 Revised:2015-05-22 Online:2015-08-10 Published:2015-08-10

摘要:

页岩气储层存在从纳米尺度到宏观尺度的非均质性。采用多种实验数据,分析中上扬子地区筇竹寺组与龙马溪组页岩气储层孔隙结构与微观非均质性、孔隙演化规律及影响因素。研究认为,筇竹寺组与龙马溪组属良好页岩气发育层位,黑色页岩厚度一般分别大于100m和50m。筇竹寺组孔隙度、总孔容和孔比表面积等孔隙结构参数均低于龙马溪组,差异性较大。龙马溪组以微孔—过渡孔占绝对优势;孔隙结构参数变异系数及核磁共振弛豫时间T2特征均表明筇竹寺组非均质性更强;最利于储气的微孔不稳定,较少存在渗流型孔隙,各级孔隙间连通性弱;龙马溪组微孔稳定,具渗流型孔隙,连通性好。高成熟度利于有效孔隙形成,有机酸可促进溶蚀孔发育,机械压实作用造成粒内孔和粒间孔减少,黏土矿物通过自身形态转变和层间水排出影响孔隙。储层所受多期构造应力场相似,形成张性和剪性裂隙网,增加储集空间、连通性和渗透性;物质成分及其成岩演化是孔隙结构主要内因,也是孔隙演化本质,孔裂隙显著受TOC和石英等物质影响;TOC和石英含量与总孔容和孔比表面积呈正线性关系,黏土矿物含量与之呈负线性关系。

关键词: 孔隙结构, 非均质性, 海相页岩气储层, 中上扬子地区

Abstract:

The composition and structure of shale gas reservoirs show remarkable heterogeneity from macro-scale to nano-scale.By comprehensively analyzing various experimental data,the pore structure,micro-heterogeneity and the affecting factors,along with pore evolvement rule of both the Qiongzhusi Formation and Longmaxi Formation in the Middle-Upper Yangtze were characterized.Both formations are organic enriched with shale thickness more than 100m and 50m,respectively.However,the porosity,pore volume,specific surface area and other parameters of the shales differ prominently and the Longmaxi Formation represents a better pore structure parameter.The micropore and transitional pore are the dominant pore type in the Longmaxi Formation,which is unlike the Qiongzhusi Formation,whose pore volume of samples is quite centralized in certain interval with poor connectivity.The variation coefficient of pore structure and the NMR relaxation time (T2) indicate that the Qiongzhusi shale is of higher heterogeneity,and the micropore volume,which is the key space for gas occurrence,differs between samples in the Qiongzhusi shale and represents a weak connectivity.These two shales experienced similar external factors,such as multiphase tectonic stress field deformation,and formed tensional and shear fissure network,which increased the reserving volume,connectivity,and permeability.Composition and the diagenesis modification are the main internal factors and the nature of pore evolvement,and the pores and fissures are mainly influenced by the organic matter,quartz,and other compositions.TOC and quartz content represent a positive liner correlation with pore volume and specific surface area,while clay content is negative.High maturity is beneficial in forming effective pore network because the dissolution of organic acid.Compaction leads to the volume decrease of inter-and intrapartical pores,and the draining of interlayer water as well as mechanical deformation of clay impacts on the pore structure,too.

Key words: Pore structure, Heterogeneity, Marine shale gas reservoir, The Middle-Upper Yangtze

中图分类号: 

  • TE122.2

[1]Curtis M E,Sondergeld C H,Ambrose R J,et al.Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J].AAPG Bulletin,2012,96(4): 665-667.
[2]Ross D J K,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927.
[3]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J].Journal of China Coal Society,2012,37(3):439-444.[陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):439-444.]
[4]Bernard S,Wirth R,Schreiber A,et al.Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J].International Journal of Coal Geology,2012,103:3-11.
[5]Yu Bingsong.Particularity of shale gas reservoir and its evaluation[J].Earth Science Frontiers,2012,19(3):252-258.[于炳松.页岩气储层的特殊性及其评价思路和内容[J].地学前缘,2012,19(3):252-258.]
[6]Jiang Kaixi,Peng Li,He Wenxiang,et al.Research of shale gas reservoir heterogeneity:A case of the Lower Cambrian Qiongzhusi Formation of the Sichuan Basin[J].Marine Geology Frontiers,2014,30(8):47-54.[江凯禧,彭丽,何文祥,等.页岩气储层非均质性研究——以四川盆地下寒武统筇竹寺组为例[J].海洋地质前沿,2014,30(8):47-54.]
[7][JP2]Xiao Xianming,Song Zhiguang,Zhu Yanming,et al.Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area[J].Journal of China Coal Society,2013,38(5):721-727.[肖贤明,宋之光,朱炎铭,等.北美页岩气研究及对我国下古生界页岩气开发的启示[J].煤炭学报,2013,38(5):721-727.][JP]
[8]Wang Qingchen,Yan Detian,Li Shuangjian,et al.Tectonic-environmental model of the Lower Silurian high-quality hydrocarbon source rocks from south China[J].Acta Geologica Sinica,2008,82(3):289-297.[王清晨,严德天,李双建,等.中国南方志留系底部优质烃源岩发育的构造—环境模式[J].地质学报,2008,82(3):289-297.]
[9]Mou Chuanlong,Zhou Kenken,Liang Wei,et al.Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J].Acta Geologica Sinica,2011,85(4):526-532.[牟传龙,周恳恳,梁薇,等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报,2011,85(4):526-532.]
[10]Jiao Kun,Yao Suping,Wu Hao,et al.Advances in characterization of pore system of gas shales[J].Geological Journal of China Universities,2014,20(1):151-161.[焦堃,姚素平,吴浩,等.页岩气储层孔隙系统表征方法研究进展[J].高校地质学报,2014,20(1):151-161.]
[11]Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[12]Roger M S,Neal R O.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.
[13]Zhao Pei,Li Xianqing,Tian Xingwang,et al.Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J].Natural Gas Geoscience,2014,25(6):947-956.[赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学,2014,25(6):947-956.]
[14]Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
[15]Aringhieri R.Nanoporosity characteristics of some natural clay minerals and soils[J].Clays and Clay Minerals,2004,52(6):700-704.
[16]Kang S M,Fathi E,Ambrose R J,et al.Carbon dioxide storage capacity of organic-rich shales[C]//SPE Annual Technical Conference and Exhibition Held in Florence,SPE134583,2010.
[17]Reed R M,Loucks R G.Imaging nanoscal pores in the Mississippian Barnett shale of the northern Fort Worth Basin (abs)[C]//American Association of Petroleum Geologists,Annual Convention,2007,16:115.
[18]Nelson P H.Pore-throat sizes in sandstones,tight sandstones and shales[J].AAPG Bulletin,2009,93(3):329-340.
[19]Sondergeld C.H,Ambrose R.J.Micro-structural studies of gas shales[C]//Anon.Paper SPE131771.SPE Unconventional Gas Conference.Pittsburgh.Pennsylvania,USA,2010.
[20]Chen Shangbin,Xia Xiaohong,Qin Yong,et al.Classification of pore structures in shale gas reservoir at the Longmaxi Formation in the south of Sichuan Basin[J].Journal of China Coal Society,2013,38(5):760-765.[陈尚斌,夏筱红,秦勇,等.川南富集区龙马溪组页岩气储层孔隙结构分类[J].煤炭学报,2013,38(5):760-765.]
[21]Fu Xuehai,Qin Yong,Zhang Wanhong,et al.Fractal classificanon and natural classification of coal pore structure based on migration of coalbed methane [J].Chinese Science Bulletin,2005,50(supplement 1):51-55.[傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(增刊1):51-55.]
[22]Hu Lin,Zhu Yanming,Chen Shangbin,et al.Resource potential analysis of shale gas in Lower Cambrian Qiongzhusi Formation in Middle & Upper Yangtze region[J].Journal of China Coal Society,2012,37(11):1871-1877.[胡琳,朱炎铭,陈尚斌,等.中上扬子地区下寒武统筇竹寺组页岩气资源潜力分析[J].煤炭学报,2012,37(11):1871-1877.]
[23]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale gas systems:The Mississippian Barnett Shale of north central Texas as one model for thermogenic shale gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[24]Liu Baojun,Zhang Jinquan.Sedimentation and Diagenesis [M].Beijing: Science Press,1992:126-130.[刘宝珺,张锦泉.沉积成岩作用[M].北京:科学出版社,1992:126-130.]
[25]Han Shuangbiao,Zhang Jinchuan,Brian Horsfleld,et al.Pore types and characteristics of shale gas reservoir:A case study of Lower Paleozoic shale in Southeast Chongqing[J].Earth Science Frontiers,2013,20(3):247-253.[韩双彪,张金川,Brian Horsfleld,等.页岩气储层孔隙类型及特征研究——以渝东南下古生界为例[J].地学前缘,2013,20(3):247-253.]
[26]Yang Feng,Ning Zhengfu,Zhang Shidong,et al.Characterization of pore structures in shales through nitrogen adsorption experiment[J].Natural Gas Industry,2013,33(4):135-140.[杨峰,宁正福,张世栋,等.基于氮气吸附实验的页岩孔隙结构表征[J].天然气工业,2013,33(4):135-140.]
[27]Wei Guoqi,Liu Delai,Zhang Lin,et al.The exploration region and natural gas accumulation in Sichuan Basin[J].Natural Gas Geoscience,2005,16(4):437-442.[魏国齐,刘德来,张林,等.四川盆地天然气分布规律与有利勘探领域[J].天然气地球科学,2005,16(4):437-442.]
[28]Tian Hui,Pan Lei,Zhang Tongwei,et al.Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province,southwestern China[J].Marine and Petroleum Geology,2015,62(4):28-43.

[1] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 李滔,李闽,张烈辉,田山川,赵潇雨,郑玲丽. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29(8): 1181-1189.
[3] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[4] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[5] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[6] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[7] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[8] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[9] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[10] 黄玉龙,刘春生,张晶晶,高有峰. 松辽盆地白垩系火山岩气藏有效储层特征及成因[J]. 天然气地球科学, 2017, 28(3): 420-428.
[11] 王喜鑫,侯加根,刘钰铭,窦鲁星,孙建,龚勋. 基于层次分析与模糊数学的河口坝非均质性定量表征——以王官屯油田官195断块为例[J]. 天然气地球科学, 2017, 28(12): 1914-1924.
[12] 马明,陈国俊,李超,张功成,晏英凯,赵钊,沈怀磊. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征[J]. 天然气地球科学, 2017, 28(10): 1515-1526.
[13] 李凤丽,姜波,宋昱,汤政. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学, 2017, 28(1): 173-182.
[14] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[15] 刘晓鹏,刘燕,陈娟萍,胡爱平. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!