天然气地球科学

• 天然气地质学 • 上一篇    下一篇

沉积速率与烃源岩有机质丰度关系——以二连盆地为例

丁修建,柳广弟,查明,黄志龙,高长海,曲江秀,卢学军,陈哲龙,郭继刚   

  1. 1.中国石油大学地球科学与技术学院,山东 青岛 266580;2.中国石油大学地球科学学院,北京 102249;
    3.中国石油华北油田分公司,河北 任丘 062550;4.国土资源部油气资源战略研究中心,北京 100034
  • 收稿日期:2014-11-11 修回日期:2014-12-13 出版日期:2015-06-10 发布日期:2015-06-10
  • 作者简介:丁修建(1986-),男,山东台儿庄人,博士后,主要从事油气藏形成与分布规律研究.E-mail:dingxj129@foxmail.com.
  • 基金资助:

    国家重点基础研究发展计划项目(编号:2014CB239005);国家科技重大专项(编号:2011ZX05001-001)联合资助.

Relationship between Sedimentation Rate and Organic Matter Abundance of Source Rocks:A Case Study of Erlian Basin

DING Xiu-jian,LIU Guang-di,ZHA Ming,HUANG Zhi-long,GAO Chang-hai,QU Jiang-xiu,LU Xue-jun,CHEN Zhe-long,GUO Ji-gang   

  1. 1.School of Geosciences in China University of Petroleum,Qingdao 266580,China;
    2.College of Geosciences in China University of Petroleum,Beijing 102249,China;3.Research Institute of
    Petroleum Exploration and Development, Huabei Petroleum Administration Bureau,Renqiu 062550,China;
    4.Strategic Research Center of Oil and Gas Resources,Ministry of Land and Resources,Beijing 100034,China
  • Received:2014-11-11 Revised:2014-12-13 Online:2015-06-10 Published:2015-06-10

摘要:

沉积速率与烃源岩有机质丰度的关系研究主要集中于海相沉积中,一般认为是正相关关系或负相关关系。利用二连盆地61口探井的取心资料,研究了湖相沉积中沉积速率与烃源岩有机质丰度的关系。沉积速率低于5cm/ka时沉积环境的氧化还原程度影响着沉积速率与烃源岩有机质丰度的关系,氧化环境中沉积速率与有机质丰度为明显的正相关关系,随着沉积速率的增高有机质丰度明显增大;还原环境中沉积速率与有机质丰度相关性差,沉积速率对烃源岩有机质丰度影响较小,随着沉积速率的增高有机质丰度没有明显变化趋势。沉积速率高于5cm/ka时古生产力影响着沉积速率与烃源岩有机质丰度的关系,古生产力低的湖盆中沉积速率与有机质丰度为明显的负相关关系,随着沉积速率的增高有机质丰度明显减小;古生产力大的湖盆中沉积速率与有机质丰度相关性差,沉积速率的变化对烃源岩有机质丰度影响较小,随着沉积速率的增高有机质丰度没有明显变化趋势。

关键词: 沉积速率, 有机质丰度, 烃源岩, 二连盆地

Abstract:

Relationship between sedimentation rate and organic matter abundance of source rocks has been studied mainly in marine sediments,which is generally thought to be positive or negative correlation.Based on the data sets of sediment intervals from 61 exploration wells in the lacustrine Erlian Basin,the relationship in ancient lacustrine sediments has been studied.It has been found out that the relationship between sedimentation rate and organic matter abundance of source rocks is controlled by the redox conditions when sedimentation rate is lower than 5cm/ka,while when sedimentation rate is higher than 5cm/ka,the relationship is controlled by the paleo-productivity.When sedimentation rate is lower than 5cm/ka,the relationship is positively correlated under the oxidation conditions,while in reduction conditions,there is no significant relationship between sedimentation rate and organic matter abundance.When sedimentation rate is higher than 5 cm/ka,the relationship is controlled by the paleo-productivity.The relationship is negatively correlated in low palaeo-productivity environment while there is no significant relationship between sedimentation rate and organic matter abundance in high paleo-productivity environment.

Key words: Sedimentation rate, Organic matter abundance, Source rocks, Erlian Basin

中图分类号: 

  • TE122.1

[1]Barry J K.Controlling factors on source rock development-a review of productivity,preservation,and sedimentation rate[C]//Harris N B.The Deposition of Organic Carbon Rich Sediments:Models,Mechanisms,and Consequences.Tulsa:Society for Sedimentary Geology,2005:7-16.
[2]Calvert T F.Anoxia vs.productivity:What controls the formation of organic carbon rich sediments and sedimentary rocks[J].AAPG Bulletin.1990,4(74):454-466.
[3]Parrish J T.Paleogeography of Corg-rich rocks and the preservation versus production controversy[C]//Huc A Y.Paleogeography,Paleoclimate,and Source Rock.AAPG Memoir 40.Tulsa:American Association of Petroleum Geologists,1995:1-20.
[4]Katz B J.Controls on distribution of lacustrine source rocks through time and space[C]//Katz B J.Lacustrine Basin Exploration:Case Studies and Modern Analogs.AAPG Memoir 50.Tusal:AAPG,1990:61-76.
[5]Tyson R V.Fossil Fuels and Environmental Geochemistry[M].UK:University of Newcastle upon Tyne,1995:119.
[6]Stein R.Surface-water Paleo-productivity as Inferred from Sediment Deposited in Oxic and Anoxic Deep-water Environments of the Mesozoic Atlantic Ocean[M].Hamburg:Mitteilungen Geologisch-Pal Ontologisches  Institut,University Hamburg,1986:55-70.
[7]Demaison G J,Moore G T.Anoxic environments and oil source bed genesis[J].Organic Geochemistry,1980,2(1):9-31.
[8]Arthur M A,Dean W E.Organic matter production and preservation and evolution of anoxia in the Holocene Black Sea[J].Paleoceanography,1998,13(4):395-411.
[9]Hedges J I,Keil R G.Sedimentary organic matter preservation:An assessment and speculative synthesis[J].Marine Chemistry,1995,49(2):81-115.
[10]Adriano Mazzinia,Michael K.Ivanovb,Anders Nermoen,et al.Complex plumbing systems in the near subsurface:Geometries of authigenic carbonates from Dolgovskoy Mound(Black Sea) constrained by analogue experiments[J].Marine and Petroleum Geology,2008,25(6):457-472.
[11]Donald E Canfield.Sulfate reduction and oxic respiration in marine sediments:Implications for organic carbon preservation in euxinic environments[J].Deep Sea Research Part A:Oceanographic Research Papers,1989,36(1):121-138.
[12]Schulte S,Kai Mangelsdorf,Jurgen Rullkotter.Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry[J].Organic Geochemistry,2000,31(10):1005-1022.
[13]Heath G R,Moore T C,Dauphin J P.Organic carbon in deep sea sediments[C]//Anderson N R,Malahoff A.The Fate of Fossil Fuel CO2 in the Oceans.Office of Naval Research,Ocean Science and Technology Division,United States,Marine science 6,1977:605-625.
[14]Li Shaojie,He Sheng,Zhu Weilin,et al.The study on sedimentation rate of source rockbased on cyclostratigraphic analysis in the Zhuyi Depression[J].Natural Gas Geoscience,2014,25(9):1328-1340.[李劭杰,何生,朱伟林,等.基于珠一坳陷旋回地层分析的烃源岩沉积速率研究[J].天然气地球科学,2014,25(9):1328-1340.]
[15]Muller P J,Suess E.Productivity,sedimentation rate and sedimentary organic carbon content in the oceans[J].Deep Sea Research,1979,26(4):1347-1362.
[16]Ibach L E J.Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J].AAPG Bulletin,1982,66(2):170-188.
[17]Henrichs S M,Reeburgh W S.Anaerobic mineralization of marine sediment organic matter:Rates and the role of anaerobic processes in the oceanic carbon economy[J].Geomicrobiology Journal,1987,13(5):191-237.
[18]Bralower T J,Thierstein H R.Organic carbon and metal accumulation in Holocene and mid-Cretaceous marine sediments:Paleoceanographic significance[C]//Brooks J,Fleet A J.Marine petroleum source rocks,BP research center,Special Volume 26,1987:345-369.
[19]Tyson R V.Sedimentation rate,dilution,preservation and total organic carbon:Some results of a modelling study[J].Organic Geochemistry,2001,32(11):333-339.
[20]Katz B J.Controlling factors on source rock development-a review of productivity,preservation,and sedimentation rate[C]//Harris N B.The Deposition of Organic Carbon Rich Sediments:Models,Mechanisms,and Consequences.Department of Geology and Geological Engineering,Colorado School of Mines,Special Volume 82,2005:7-16.
[21]Keil R G,Tsamakis E,Fuh C B,et al.Mineralogical and textural controls on the organic matter composition of coastal marine sediments:Hydrodynamic separation using Splitt-fractionation[J].Geochimica et Cosmochimica  Acta,1994,58(2):879-893.
[22]Keil R G,Montlu on D B,Prahl F G,et al.Sorptive preservation of labile organic matter in marine sediments[J].Nature,1994,370(6490):549-552.
[23]Mayer L M.Surface area control of organic carbon accumulation in continental shelf sediments[J].Geochimica et Cosmochimica Acta,1994,58(4):1271-1284.
[24]Collins M J,Bishop A N,Farrimond P.Sorption by mineral surfaces:Rebirth of the classical condensation pathway for kerogen formation[J]  Geochimica et Cosmochimica Acta,1995,59(11):2387-2391.
[25]Hartnett H E,Keil R G,Hedges J I,et al.Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J].Nature,1998,39(391):1572-575.
[26]Ransom B,Kim D,Kastner M,et al.Organic matter preservation on continental slopes:Importance of mineralogy and surface area[J].Geochimica et Cosmochimica Acta,1998,62(8):1329-1345.
[27]Mayer L M.Extent of coverage of mineral surfaces by organic matter in marine sediments[J].Geochimica et Cosmochimica Acta,1999,63(2):207-215.
[28]Mayer L M.Erratum to Mayer L.M.
Erratum to L. M. Mayer (1999) “Extent of coverage of mineral surfaces by organic matter in marine sediments” geochimica et cosmochimica acta 63,207-215
[J].Geochimica et Cosmochimica Acta,2005,69(5):1375.
[29]Loutit T S,Hardenbol J,Vail P R,et al.Condensed sections:The key to age determination and correlation of continental margin sequences[C]//Wilgus C K,Hasting B S,Posamentier H,et al.Sea Level Changes:An Integrated Approach.Everest Geotech,Houston,TX,Special Volume 42,1988:183-213.
[30]Canfield D E.Sulfate reduction and oxic respiration in marine sediments:implications for organic carbon preservation in euxinic environments[J].Deep Sea Research Part A:Oceanographic Research Papers,1989,36(1):121-138.
[31]Rullkotter J Z.Organic matter:The driving force for early diagenesis[C]//Schulz H D,Zabel M.Marine Geochemistry.Bremen:Universit t Bremen,1999:129-172.
[32]Stein R.Organic carbon and sedimentation rate-further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic Ocean[J].Marine Geology,1986,72(3):199-209.
[33]Bralower T J,Thierstein H R.Organic carbon and metal accumulation in Holocene and mid-Cretaceous marine sediments:Paleoceanographic significance[C]//Brooks J,Fleet A J.Marine Petroleum Source Rocks.BP research center,Special Volume 26,1987:345-369.
[34]Littke R,Baker D R,Leythaeuser D,et al.Keys to the depositional history of the Posidonia Shale(Toarcian) in the Hils syncline,northern Germany[C]//Tyson R V,Pearson T H.Modern and Ancient Continental Shelf Anoxia.University of Newcastle upon Tyne UK,Special,1991,58:311-334.
[35]Ibach L E J.Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J].AAPG Bulletin,1982,66(2):170-188.
[36]Wang Tonghe.A preliminary study on the Erlian Basin characteristics for structural petroleum geological[J] .Experimental Petroleum Geology,1986,7(1):313-325.[王同和.二连盆地石油地质构造特征初探[J].石油实验地质,1986,7(1):313-325.]
[37]Yu Yingtai.Evolution of characteristics of Erlian Basin and the distribution of oil and gas deposits[J].Acta Petrolei Sinica,1990,11(3):12-20.[于英太.二连盆地演化特征及油气分布[J].石油学报,1990,11(3):12-20.]
[38]Zhao Xianzheng,Shi Yuanpeng,Jiang Shuanqi,et al.Scientific,fast and efficient exploration in Aer Sag of Erlian Basin[J].China Petroleum Exploration,2010,15(1):1-5.[赵贤正,史原鹏,降栓奇,等.二连盆地阿尔凹陷科学、快速、高效勘探实践和认识[J].中国石油勘探,2010,15(1):1-5.]
[39]Ding Xiujian,Liu Guangdi,Lu Xuejun,et al.The impact on organic matter preservation by the degree of oxidation and reduction and sedimentation rates of Erlian Basin[J].Natural Gas Geoscience,2014,25(6):810-817.[丁修建,柳广弟,卢学军,等.二连盆地氧化—还原程度和沉积速率对有机质保存的影响[J].天然气地球科学,2014,25(6):810-817.]
[40]Xiao Yang,Tang jin,Sun Chaohui,et al.Hydrocarbon accumulation conditions and reservoir types of Aer Sag in Erlian Basin[J].China petroleum exploration,2010,10(2):41-44.[肖阳,唐谨,孙朝辉,等.二连盆地阿尔凹陷油气成藏条件及油藏类型[J].中国石油勘探,2010,10(2):41-44.]
[41]Ma Liqiao.Sequence Stratigraphy Research And Stratigraphic/Lithologic Reservoirs Prediction on Lowe Cretaceous in A’nan-A’bei Sag,Erlian Basin,China[D].Hangzhou:Zhejiang University,2005.[马立桥.二连盆地阿南—阿北凹陷下白垩统层序发育特征与岩性地层油气藏预测[D].杭州:浙江大学,2005.]
[42]Wang Quan.The Main Distribution Zone and Reservoir Forming Mechanism of Lithologic Reservoirs in Oil-bearing Fault Sags,Erlian Basin[D].Beijing:China University of Geosciences(Beijing),2010.[王权.二连盆地含油断陷岩性油藏主要发育区带与成藏机制研究[D].北京:中国地质大学(北京),2010.]
[43]Zhu Yuheng,Zhang Wenchao.Sedimentary Facies and Hydrocarbon-bearing of Lower Cretaceous Strata in Erlian Basin[M].Beijing:Science Press,2000:81-162.[祝玉衡,张文朝.二连盆地下白垩统沉积相及含油性[M].北京:科学出版社,2000:81-162.]
[44]Li Xin.Petroleum Resource Constitute of Erlian Basin and Its Exploration Potential Analysis[D].Beijing:China University of Mining & Technology(Beijing),2009.[李欣.二连盆地石油资源结构与勘探潜力分析[D].北京:中国矿业大学,2009.]
[45]General Administration of Quality Supervision,Inspection and Quarantine of the People′s Republic of China(AQSIQ).The Standard Test Method for Biomarker in Sediment and Crude Oil By GC-MS(GB/T 18606-2001)[S].Beijing:China Stand Press,2002:1-13.[中华人民共和国国家质量监督检验检疫总局.气相色谱质谱法测定沉积物和原油中生物标志物(GB/T 18606-2001)[S].北京:中国标准出版社,2002:1-13.]
[46]General Administration of Quality Supervision,Inspection and Quarantine of the People′s Republic of China(AQSIQ).Methods for chemical analysis of silicate rocks:Part 30:Determination of 44 elements(GB/T 14506.30-2010)[S].Beijing:China Stand Press,2011:1-20.[中华人民共和国国家质量监督检验检疫总局.硅酸盐岩石化学分析方法第30部分:44个元素量测定(GB/T 14506.30-2010)[S].北京:中国标准出版社,2011:1-20.]
[47]Didyk B M,Simoneit B R T,Brassell S C,et al.Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J].Nature,1978,272(16):216-222.
[48]Conna J.Diagenese naturelle et diagenese artificielle de la matiere organique an element vegetaux predominant[C]//Tissot B P,Bienner F.Advance in Organic Geochemistry.Pars:Editions Technip,1973:73-95.
[49]Albrecht P,Vandenbroucke M,Mandengue M.Geochemical studies on the organic matter from the Douala Basin(Cameroon)-I.Evolution of the extractable organic matter and the formation of petroleum[J].Geochimica et Cosmochimica Acta,1976,40(7):791-799.
[50]Seifert W K,Moldowan J M.Applications of steranes,terpanes and monoaromatics to the maturation,migration and source of crude oils[J].Geochimica et Cosmochimica Acta,1978,42(1):77-95.
[51]Seifert W K,Moldowan J M.Use of biological markers in petroleum exploration[J].Methods in Geochemistry and Geophysics,1986,24(3):261-290.
[52]Oana S,Deevey E S.Carbon 13 in lake waters and its possible bearing on paleolimnology[J].American Journal of Science,1960,258(11):253-272.
[53]Mckenzie J A.carbon-13 cycle in lake Greifen:A model for restricted ocean basins[C]//Schlanger S O,Cita M B.Nature and Origin of Cretaceous Carbon Rcih Facies.London:Academic press,1982:197-207.
[54]McKenzie J A.Carbon isotopes and productivity in the lacustrine and marine environment[C]//Stumm W.Chemical Processes in Lakes.New York:Wiley,1985:99-118.

[1] 傅宁,刘建升. 北部湾盆地流二段3类烃源岩的生烃成藏特征[J]. 天然气地球科学, 2018, 29(7): 932-941.
[2] 贾智彬,侯读杰,孙德强,姜玉涵,张自鸣,洪梅. 贵州地区牛蹄塘组底部烃源岩地球化学特征[J]. 天然气地球科学, 2018, 29(7): 1031-1041.
[3] 程志强,王飞宇,师玉雷,冯伟平,谢佩宇,任利兵,吴子强,江涛,赵志刚. 二连盆地乌里雅斯太凹陷南洼烃源岩有机相与生烃特征[J]. 天然气地球科学, 2018, 29(5): 696-707.
[4] 申宝剑,秦建中,腾格尔,潘安阳,仰云峰,边立曾. 中国南方海相烃源岩中细菌状化石识别[J]. 天然气地球科学, 2018, 29(4): 510-517.
[5] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[6] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[7] 杨飞,蒲秀刚,姜文亚,韩文中,张伟,时战楠,林常梅. 渤海湾盆地沧东凹陷孔二段细粒相区有机地球化学特征[J]. 天然气地球科学, 2018, 29(4): 550-558.
[8] 白雪峰, 梁江平, 张文婧, 付丽, 彭建亮, 薛涛, 杨立伟, 刘继莹. 松辽盆地北部深层天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1443-1454.
[9] 王玉满,李新景,陈波,韩京,张家铭,袁飞,马杰,代兵,王浩,蒋珊. 中上扬子地区埃隆阶最厚斑脱岩层分布特征及地质意义[J]. 天然气地球科学, 2018, 29(1): 42-54.
[10] 秦胜飞,罗平,王铜山,王蓝军,马奎. 华北南缘东部新元古界冰碛砾岩层系中优质烃源岩的发现及地质意义[J]. 天然气地球科学, 2018, 29(1): 55-61.
[11] 李玉婷,黄志龙,安成龙,马强,王瑞,辛铭. 三塘湖盆地石炭系哈尔加乌组上、下段烃源岩特征及差异[J]. 天然气地球科学, 2018, 29(1): 73-86.
[12] 陈晓艳,田福清,邹华耀,郭柳汐,芦晓伟,殷杰,王道军. 湖相烃源岩热演化生烃研究——基于冀中坳陷烃源岩加水热模拟实验[J]. 天然气地球科学, 2018, 29(1): 103-113.
[13] 杨亚南,周世新,李靖,李成成,李源遽,马瑜,陈克非. 鄂尔多斯盆地南缘延长组烃源岩地球化学特征及油源对比[J]. 天然气地球科学, 2017, 28(4): 550-565.
[14] 刘超. 松辽盆地徐家围子地区沙河子组气源岩与致密砂砾岩气资源潜力评价[J]. 天然气地球科学, 2017, 28(3): 429-438.
[15] 赵春晨,刘护创,任来义,陈治军,李科社,白晓寅,王小多. 银额盆地YHC1井白垩系气藏形成的地质环境及其远景意义[J]. 天然气地球科学, 2017, 28(3): 439-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!