天然气地球科学

• 非常规天然气 • 上一篇    下一篇

澳大利亚E盆地Toolebuc组页岩微观孔隙结构特征

葛岩,谢英刚,胡云亭,李乐忠,郭小波,石雪峰,谷峰   

  1. 1.中海油能源发展股份有限公司工程技术分公司 天津 300457;
    2.中海石油气电集团有限责任公司技术研发中心 北京 100027;
    3.中国石油大学(北京)油气资源与探测国家重点实验室,北京102249
  • 收稿日期:2014-04-23 修回日期:2014-10-15 出版日期:2015-05-10 发布日期:2015-05-10
  • 作者简介:葛岩(1984-),男,山西大同人,工程师,博士,主要从事非常规油气地质研究.E-mail:geyan@cnooc.com.cn.
  • 基金资助:

    国家自然科学基金项目(编号:41272156);中海油能源发展重大专项(编号:E-J613D002)联合资助.

Characterization of Microscopic Pore Structures in Shale Reservoirs of Toolebuc Formation in the E Basin,Australia

GE Yan,XIE Ying-gang,HU Yun-ting,LI Le-zhong,GUO Xiao-bo,SHI Xue-feng,GU Feng   

  1. 1.CNOOC EnerTech-Drilling & Production Co.,Tianjin 300457,China;
    2.Research & Development Center of CNOOC Gas and Power Group,Beijing 100027,China;
    3.State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,China
  • Received:2014-04-23 Revised:2014-10-15 Online:2015-05-10 Published:2015-05-10

摘要:

为了研究Toolebuc组页岩微观孔隙结构特征,应用有机地球化学、X-射线衍射对页岩矿物组分进行了测定,并通过氩离子抛光扫描电镜、液氮吸附及高压压汞等实验手段对页岩孔隙类型及孔隙结构进行了深入的分析。结果表明:Toolebuc组页岩为高丰度海相页岩,脆性矿物含量约为55%,具有一定的可压裂性;页岩平均孔隙度为15%,渗透率主要分布在(0.002~0.116)×10-3μm2之间;孔隙类型包括黏土矿物粒间孔、岩石骨架颗粒粒间孔、有机质孔隙、生物化石孔、有机酸溶孔及微裂缝6种类型,其中黏土矿物粒间孔、岩石骨架颗粒粒间孔最为发育;页岩孔径分布复杂,以中孔为主,其次为大孔和微孔;大孔及中孔提供了大部分孔体积,有利于游离气的聚集,中孔及微孔比表面积所占的比例最高,有利于吸附气的保存;页岩孔隙类型及分布受成岩演化及热演化的控制作用明显。

关键词: Toolebuc页岩, 储层特征, 液氮吸附, 澳大利亚

Abstract:

In order to investigate the nanostructure morphology of shale reservoirs of the Toolebuc Formation,organic geochemical and X-ray diffraction experiments are used to measure the mineral composition and argon ion polishing-SEM,liquid nitrogen adsorption and high pressure mercury experiments are used to analyze the pore types and structures of Toolebuc shale.Result shows that shale of Toolebuc Formation is high abundance marine shale,the content of brittle minerals is 55%,and can be fractured.The average porosity of shale is 15%,while the permeability ranges from 0.002×10-3μm2 to 0.116×10-3μm2.Research shows that pores of shale can be classified into six types: Inter-particle pores between clay minerals,mineral pores in rock skeletons,pores in organic,apertures in paleontology fossils,organic acid solution pores and micro-fractures,of which the most common ones are inter-particle pores between clay minerals and mineral pores in rock skeletons.The pores size distribution of shale is complex,which includes not only predominant mode-pores,but also a certain amount of macro-pores and micro-pores.Macro-pores and mode-pores provide most of pore volume,it is good for the accumulation of free gas,and mode-pores and micro-pores provide most of specific surface area,and it is good for the preservation of absorbed gas.The types and distribution of pores in shale are obviously controlled by the diagenetic evolution and thermal evolution.

Key words: Toolebuc shale, Reservoir characteristics, Liquid nitrogen adsorption, Australia

中图分类号: 

  • P618.13

[1]Curbs J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[2]Jiang Huaiyou,Song Xinmin,An Xiaoxuan,et al.Global shale gas resources and its E & P technologies[J].Natural Gas Technology,2008,2(6):26-30.[江怀友,宋新民,安晓璇,等.世界页岩气资源与勘探开发技术综述[J].天然气技术,2008,2(6):26-30.]
[3]Zhao Jingzhou.Conception,classification and resource potential of unconventional hydrocar-bons [J].Natural Gas Geoscience,2012,23(3):394-403.[赵靖舟.非常规油气有关概念、分类及资源潜力[J].天然气地球科学,2012,23(3):394-403.]
[4]Dong Dazhong,Zou Caineng,Li Jianzhong,et al.Resource potential,exploration and development prospect of shale gas in the whole world[J].Geological Bulletin of China,2011,30(2):324-336.[董大忠,邹才能,李建忠,等.页岩气资源潜力与勘探开发前景[J].地质通报,2011,30(2):324-336.]
[5]Wake-Dyster K D,Moss F J,Sexton M J.New seismic reflection results in the central Eromanga Basin,Queensland,Australia:The key to understanding its tectonic evolution[J].Tectonophysics,1983,100(3):147-162.
[6]Boult P J.Membrane seal and tertiary migration pathways in the Bodalla South Oilfield,Eromanga Basin,Australia[J].Marine and Petroleum Geology,1993,10(1):3-13.
[7]Ellis G.Hydrocarbon entrapment in Triassic to Late Jurassic reservoirs in the Timor Sea,Australia:New insights[J].APPEA Journal,2007,47(1):39-53.
[8]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.[杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.]
[9]Wang Jie,Qin Jianzhong,Rao Dan,et al.Microstructure and simulation experiments of extracted gas capability in different types of shale[J].Natural Gas Geoscience,2013,24(4):652-658.[王杰,秦建中,饶丹,等.不同类型页岩富集烃类气能力模拟实验及微观结构特征研究[J].天然气地球科学,2013,24(4):652-658.]
[10]Yang Feng,Ning Zhengfu,Wang Qing,et al.Fractal characteristics of nanopore in shales[J].Natural Gas Geoscience,2014,25(4):618-623.[杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.]
[11]Xiong Wei,Guo Wei,Liu Honglin,et al.Shale reservoir characteristics and isothermal adsorption properties[J].Natural Gas Industry,2012,32(1):113-116.[熊伟,郭为,刘洪林,等.页岩的储层特征以及等温吸附特征[J].天然气工业,2012,32(1):113-116.]
[12]Qiu Xiaosong,Yang Bo,Hu Mingyi.Characteristics of shale reserviors and gas content of Wufeng-Longmaxi Formation in the middle Yangtze region[J].Natural Gas Geoscience,2013,24(6):1274-1283.[邱小松,杨波,胡明毅.中扬子地区五峰组-龙马溪组页岩气储层及含气性特征[J].天然气地球科学,2013,24(6):1274-1283.]
[13]Nie Haikuan,Zhang Jinchuan.Types and characteristics of shale gas reservoir:A case study of Lower Paleozoic in and around Sichuan Basin[J].Petroleum Geology & Experiment,2011,33(3):219-225.[聂海宽,张金川.页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J].石油实验地质,2011,33(3):219-225.]
[14]Wu Lingang,Li Xiusheng,Guo Xiaobo,et al.Diagenetic evolution and formation mechanism of dissolved pore of shale oil reservoirs of Lucaogou Formation in Malang Sag[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(3):38-43.[吴林钢,李秀生,郭小波,等.马朗凹陷芦草沟组页岩油储层成岩演化与溶蚀孔隙形成机制[J].中国石油大学学报:自然科学版,2012,36(3):38-43.]
[15]Huang Zhenkai,Chen Jianping,Xue Haitao,et al.Microstructural characteristics of the Cretaceous Qingshankou Formation shale,Songliao Basin[J].Petroleum Exploration and Development,2013,40(1):58-65.[黄振凯,陈建平,薛海涛,等.松辽盆地白垩系青山口组泥页岩孔隙结构特征[J].石油勘探与开发,2013,40(1):58-65.]
[16]Meng Yuanlin,Zhao Zitong,Jiao Jinhe,et al.Geochemical characteristics of the shale hydrocarbon in Gonghe Basin[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(5):32-37.[孟元林,赵紫桐,焦金鹤,等.共和盆地页岩油气地球化学特征[J].中国石油大学学报:自然科学版,2012,36(5):32-37.]

[1] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[2] 王国龙,杜社宽. 准噶尔盆地北三台凸起二叠系梧桐沟组一段碎屑岩储层特征及控制因素[J]. 天然气地球科学, 2018, 29(5): 675-681.
[3] 李国欣, 易士威, 林世国, 高阳, 李明鹏, 李德江, 王昌勇. 塔里木盆地库车坳陷东部地区下侏罗统储层特征及其主控因素[J]. 天然气地球科学, 2018, 29(10): 1506-1517.
[4] 贾成业,贾爱林,韩品龙,王建君,袁贺,乔辉. 四川盆地志留系龙马溪组优质页岩储层特征与开发评价[J]. 天然气地球科学, 2017, 28(9): 1406-1415.
[5] 鲁新川,安永福,夏维民,胡子见,张顺存,史基安. 准噶尔盆地阜东斜坡区侏罗系三工河组沉积微相特征及对储层的控制[J]. 天然气地球科学, 2017, 28(12): 1810-1820.
[6] 杨志冬. 准噶尔盆地红山嘴油田红153井区二叠系夏子街组砂砾岩储层特征及影响因素[J]. 天然气地球科学, 2017, 28(12): 1829-1838.
[7] 张功成,屈红军,赵冲,张凤廉,赵钊. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学, 2017, 28(10): 1447-1477.
[8] 李凤丽,姜波,宋昱,汤政. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学, 2017, 28(1): 173-182.
[9] 段永明,张岩,刘成川,曾焱,吴铬,卜淘,邓美洲,尹慧敏. 川西致密砂岩气藏开发实践与认识[J]. 天然气地球科学, 2016, 27(7): 1352-1359.
[10] 杨生超,邱隆伟,刘魁元,韩霄,姜嘉诚,单宝杰,刘连启. 渤海湾盆地济阳坳陷邵家洼陷沙四段湖相碳酸盐岩储层特征与分类评价[J]. 天然气地球科学, 2016, 27(4): 628-638.
[11] 桂丽黎,赵孟军,刘可禹,罗秘,孟庆洋,袁莉, 郝加庆. 柴达木盆地尕斯地区古近系砂岩储层流体—成藏演化特征[J]. 天然气地球科学, 2016, 27(2): 289-297.
[12] 降文萍,张群,姜在炳,韩保山. 构造煤孔隙结构对煤层气产气特征的影响[J]. 天然气地球科学, 2016, 27(1): 173-179.
[13] 陈波,李哲,苏蓓蓓,朱永才,史基安. 准噶尔盆地车拐地区三叠系相对优质储层主控因素[J]. 天然气地球科学, 2015, 26(S2): 73-82.
[14] 黄保家,黄灏,金秋月,周刚,赵幸滨. 下扬子皖东南地区二叠系页岩储层特性及甲烷吸附能力[J]. 天然气地球科学, 2015, 26(8): 1516-1524.
[15] 蒋平,穆龙新,张铭,赵文光. 中石油国内外致密砂岩气储层特征对比及发展趋势[J]. 天然气地球科学, 2015, 26(6): 1095-1105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!