天然气地球科学

• 非常规天然气 • 上一篇    下一篇

基于13C NMR谱的煤层气应力成藏作用机理及控气意义

王志荣,陈玲霞,韩中阳,陈平   

  1. 1.郑州大学水利与环境学院,河南 郑州 450001;2.郑煤集团煤质监测中心,河南 郑州 452371
  • 收稿日期:2014-06-17 修回日期:2014-09-11 出版日期:2015-05-10 发布日期:2015-05-10
  • 作者简介:王志荣(1963-),男,浙江嘉善人,教授,博士,主要从事地质工程与地质灾害防治研究. E-mail:wangzhirong513@sina.com.
  • 基金资助:

    国家自然科学基金项目(编号:41272339)资助.

Accumulation Mechanism of  Coalbed Methane Based on 13C NMRSpectrum and Its Gas-controlling Significance

WANG Zhi-rong,CHEN Ling-xia,HAN Zhong-yang,CHEN Ping   

  1. 1.School of Water Conservancy and Environment Engineering,Zhengzhou University,Zhengzhou 450001,China;
    2.Centre of coal quality detection of Group Limited Company of Zhengzhou Mining,Zhengzhou 452371,China
  • Received:2014-06-17 Revised:2014-09-11 Online:2015-05-10 Published:2015-05-10

摘要:

构造应力是促进煤化作用,从而也是影响煤层气生成的主要因素。为了探索浅层脆性条件下,不同类型构造应力对煤层气形成的影响机理和控藏意义,利用豫西煤田重力滑动构造典型的应力分区特性,在挤压、拉伸和剪切3个构造变形单元内,分别采集主采二1煤样并测定核磁共振吸收强度。测试结果表明,挤压、拉伸和剪切3个构造单元内煤样的芳碳率依次减小,数值分别是0.773、 0.730、0.702,而脂碳率依次增加,数值分别是0.138、0.167、0.182,各官能团的相对含量亦随应力分区的不同呈现相应的变化。此外,羧基碳含量依次是0.061、0.042、0.082,羰基碳含量依次是0.053、0.030、0.016。上述NMR结构参数佐证,低温条件下构造应力仍然是重要的煤化作用因素,但不同性质的构造应力,其控制作用程度则有所不同。各向异性挤压应力的作用机制相对强烈,对煤层气成藏进程具有较大的促进作用|拉伸应力的煤化作用仅次于挤压应力;由浅层滑动作用引起的剪切应力对煤层气产生的促进作用相对最小。研究成果对煤矿安全生产和煤层气的综合开采利用具有一定理论意义。

关键词: 构造应力, 控藏意义, 核磁共振, 煤层气成藏进程

Abstract:

Tectonic stress is a main influence factor of coalification and coalbed methane(CBM) formation.In order to study the effect and reservoir-controlling significance of different tectonic stress on CBM formation under shallow brittle deformation condition,Ⅱ coal samples were collected from tectonic deformation zones induced by compressive,tensile and shear stress according to the typical partitioning features of gravity sliding structure in Western Henan coalfield,and then the nuclear magnetic resonance(NMR) absorption intensity of samples were measured.The results show that the aromatic carbon rate of the three zones decreases successively with values of 0.773,0.730,0.702,while the aliphatic carbon rate increases with values of 0.138,0.167,0.182,and the relative content of each functional group in different zones also changes correspondingly.In addition,the content ratio of carboxyl is 0.061,0.042,0.082,and that of carbonyl is 0.053,0.030,0.016.The NMR structure parameters indicate that tectonic stress is still an important factor of coalification under low temperature,but the effect degree of different stress is different.The action mechanism of anisotropic extrusion stress is complex,and has great promotion in CBM formation|the promotion effect of tensile stress is after extrusion stress,while the promotion effect of shear stress caused by shallow sliding is relatively minimal.The conclusions have some theoretical significance to coal mine safety production and CBM comprehensive exploitation.

Key words: Tectonic stress, Reservoir-controlling significance, Nuclear magnetic resonance, CBM formation

中图分类号: 

  • TE122.3
[1]Cao Daiyong,Li Xiaoming,Zhang Shouren.The influence of tectonic stress on coalification:Mechanism of stress degradation and condensation[J].Science in China:Serial D,2006,36(1):59-68.[曹代勇,李小明,张守仁.构造应力对煤化作用的影响——应力降解与应力缩聚机制[J].中国科学:D辑,地球科学,2006,36(1):59-68.]
[2]Zhu Xingshan,Xu Fengyin.The controlling effect of tectonic stress field and its evolution on coal and gas outburst[J].Journal of China Coal Society,1994,19(3):304-314.[朱兴珊,徐凤银.论构造应力场及其演化对煤与瓦斯突出的主控作用[J].煤炭学报,1994,19(3):304-314.]
[3]Hower J C.Observations on the role of the Bernice coal field anthracites in the development of coalification theories in the Appalachians[J].International Journal of Coal Geology,1997,33(2):95-102.
[4]Chen Jingang,Zhang Jingfei.Systematic control of structures on permeability of high coal rank reservoirs[J].Natural Gas Geoscience,2007,18(1):134-136.[陈金刚,张景飞.构造对高煤级煤储层渗透率的系统控制效应——以沁水盆地为例[J].天然气地球科学,2007,18(1):134-136.]
[5]Zhang Le,Jiang Zaixing,Guo Zhenting.Relationship between structural stress and hydrocarbon bearing pool formation[J].Natural Gas Geoscience,2007,18(1):32-35.[张乐,姜在兴,郭振廷.构造应力与油气成藏关系[J].天然气地球科学,2007,18(1):32-35.]
[6]Ju Yiwen,Jiang Bo,Hou Quanlin,et al.13C NMR spectrum of deformed coal and stress effect of its composition[J].Science in China:Serial D,2005,35(9):847-861.[琚宜文,姜波,侯泉林,等.构造煤13C NMR谱及其结构成份的应力效应[J].中国科学:D辑,2005,35(9):847-861.]
[7]Ye Chaohui,Li Xinan.Solid high resolution 13C NMR spectrum of coal[J].China Science Bulletin,1985,30(20):1545-1547.[叶朝辉,李新安.煤的固体高分辨率13C NMR谱[J].科学通报,30(20):1545-1547.] [8]Qin Kuangzong,Zhao Piyu.Study on the structural features of Huangxian lignite by solid state 13C NMR[J].Journal of Fuel Chemistry and Technology,1990,18(1):1-7.[秦匡宗,赵丕裕.用固体13C核磁共振技术研究黄县褐煤的化学结构[J].燃料化学学报,1990,18(1):1-7.]
[9]Bartuska V J,Maciel G B.Prospects for carbon-13 nuclear magnetic resonance analysis of solid fossil fuel material[J].Fuel,1977,56(4):354-357.
[10]Huai H,Groombridge C J,Scott A C,et al.13C solid state NMR spectra of Shanxi coals[J].Fuel,1996,75(1):71-77.
[11]Qin Kuangzong,Guo Shaohui.The application of NMR in solid fossil energy[J].Chinese Journal of Magnetic Resonance,1995,12(5):451-457.[秦匡宗,郭绍辉.NMR在固体化石能源中的应用[J].波谱学杂质,1995,12(5):451-457.]
[12]Ma Zhiru,Zhang Pengzhou,Zhao Xiurong.High resolution solid state 13C NMR study of Fengfeng fat coal[J].Journal of Fuel Chemistry and Technology,1996,24(3):251-255.[马志茹,张蓬洲,赵秀荣,等.峰峰肥煤的固体高分辨率核磁共振研究[J].燃料化学学报,1996,24(3):251-255.]
[13]Xu Xiufeng,Zhang Pengzhou.The study of carbon structure by solid 13C NMR and XPS[J].Coal Conversion,1995,18(4):58-61.[徐秀峰,张蓬洲.高分辨率固体 13C NMR和XPS技术表征碳的骨架结构[J].煤炭转化,1995,18(4):58-61.]
[14]Barwise A J G,Mann A L,Eglinton G,et al.Kerogen characterization by 13C NMR spectroscopy and pyrolysis-mass spectrometry[J].Organic Geochemistry,1984,(6):343-349.
[15]Zhu Suyu,Li Fan,Li Xianglan,et al.Construction of structure model for coal extracts based on NMR and FTIR spectra[J].Journal of Fuel Chemistry and Technology,1994,22(4):433-437.[朱素渝,李凡,李香兰,等.用核磁共振和红外光谱构造煤抽提物的结构模型[J].燃料化学学报,1994,22(4):433-437.]
[16]Chen Lingxia,Wan Zhirong,Li Xiaoming.The influence of tectonic stress on coalification and its gas disaster[J].Coal Geology and Exploration,2009,37(5):11-14.[陈玲霞,王志荣,李小明.构造应力对煤化作用的影响及其瓦斯灾害性[J].煤田地质与勘探,2009,37(5):11-14.]
[17]Cao Daiyong.Research of the Detachement Structures in the Southern Part of North China Coal-accumulation Belt[D].Beijing:China University of Mining and Technology(Beijing),1990:1-67.[曹代勇.华北聚煤区南部滑脱构造研究[D].北京:中国矿业大学(北京),1990:1-67.]
[18]Wang Guiliang,Cao Daiyong,Jiang Bo.The Thrust Nappe Extensional Gliding Nappe and Gravity Sliding Structure of Southern Part of North China[M].Xuzhou:China University of Mining and Technology Press,1992:1-168.[王桂梁,曹代勇,姜波.华北南部逆冲推覆伸展滑覆和重力滑动构造[M].徐州:中国矿业大学出版社,1992:1-168.]
[19]Ma Xingyuan,Suo Shutian,You Zhendong,et al.Tectonic Deformation of Mount Songshan:Gravity Structure,Structural Analysis[M].Beijing:Geological Publishing House,1981:1-256.[马杏垣,索书田,游振东,等.嵩山构造变形——重力构造、构造解析[M].北京:地质出版社,1981:1-256.]
[20]Tapponnier P,Molnar P.Slip line field theory and large scale continental tectonics[J].Nature,1976,264(5584):319-324.
[21]Vann I R,Graham R H,Hayward A B.The structure of mountain fronts[J].Journal of Structural Geology,1986,8(/4):215-227.
[22]Wilson M A,Pugmire R J,Karas J,et al.Carbon distribution in coals and coal macerals by cross polarization magic angle spinning carbon-13 nuclear magnetic resonance spectrometry[J].Analysis Chemistry,1984,56(6):933-943.
[23]Supaluknari S,Burgar I,Larkins F P.High-resolution solid-state 13C NMR studies of Australian coals[J].Organic Geochemistry,1990,15(5):509-519.
[24]Franco D V,Gelan J M,Martens H J,et al.Characterization by 13C CP/MAS NMR spectroscopy of the structural changes in coals after chemical treatments[J].Fuel,1991,70(7):811-816.
[25]Solum M S,Pugmire R J,Grant D M. 13C solid-stste NMR of Argonne premium coals[J].Energy and Fuels,1989,32(2):187-193.
[26]Denis L W.13C Nuclear magnetic resonance studies of kerogen from Cretaceous black shales thermally altered by basaltic intrusions and laboratory simulations[J].Geochimica et Cosmochimica Acta,1982,46(6):901-907.
[27]Yang Qi.Coal Metamorphism in China[M].Beijing:China Coal Industry Publishing House,1996:162-185.[杨起.中国煤变质作用[M].北京:煤炭工业出版社,1996:162-185.]
[28]Yu Shilin,Li Yinwei.Spectral Analysis[M].Chongqing:Chongqing University Press,1994:125-130.[于世林,李寅蔚.波谱分析法[M].重庆:重庆大学出版社,1994:125-130.]
[29]Wang Z R,Chen L X,Cheng C R,et al.Forecast of gas geological hazards for “three-soft” coal seams in gliding structural area[J].Journal of China University of Mining and Technology,2007,17(4):484-488.
 
[1] 郭睿良,陈小东,马晓峰,马静,[王琪],陈霖. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5): 665-674.
[2] 张宫,冯庆付,武宏亮,王克文,冯周. 基于核磁T2谱对数均值差异的碳酸盐岩气水识别[J]. 天然气地球科学, 2017, 28(8): 1243-1249.
[3] 时建超,屈雪峰,雷启鸿,傅波,何右安,赵国玺,成良丙. 致密油储层可动流体分布特征及主控因素分析——以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5): 827-834.
[4] 张冲,张超谟,张占松,秦瑞宝,余杰. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2): 352-358.
[5] 刘登科,孙卫,任大忠,张茜,明红霞,陈斌. 致密砂岩气藏孔喉结构与可动流体赋存规律——以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12): 2136-2146.
[6] 李鹏举,谷宇峰. 核磁共振T2谱转换伪毛管压力曲线的矩阵方法[J]. 天然气地球科学, 2015, 26(4): 700-705.
[7] 王濡岳,冷济高,丁文龙,龚大建,李飞,孙雅. 上扬子地区下寒武统牛蹄塘组优质页岩储层测井识别——以贵州岑巩页岩气区块为例[J]. 天然气地球科学, 2015, 26(12): 2395-2407.
[8] 李海波,郭和坤,李海舰,刘伟,姜柏材,华继昌. 致密储层束缚水膜厚度分析[J]. 天然气地球科学, 2015, 26(1): 186-192.
[9] 陈科贵,温易娜,何太洪,孙万明,王超,吴韬,付建国. 低孔低渗致密砂岩气藏束缚水饱和度模型建立及应用——以苏里格气田某区块山西组致密砂岩储层为例[J]. 天然气地球科学, 2014, 25(2): 273-277.
[10] 杨正明, 霍凌静, 张亚蒲, 王学武, 单文文. 含水火山岩气藏气体非线性渗流机理研究[J]. 天然气地球科学, 2010, 21(3): 371-374.
[11] 奎明清, 李世毅, 徐其用, 宋维春, 李伟, 刘俊丰. 核磁共振测井在疏松砂岩气田SX井的应用[J]. 天然气地球科学, 2010, 21(2): 310-315.
[12] 张 乐,姜在兴,郭振廷. 构造应力与油气成藏关系[J]. 天然气地球科学, 2007, 18(1): 32-36.
[13] 赵军;李进福;. 测井新技术在塔里木油田气藏描术中的应用[J]. 天然气地球科学, 2004, 15(3): 285-289.
[14] 武站国;张凤敏;孙广伯;曹宏涛;. 千米桥潜山碳酸盐岩凝析气藏储层评价方法[J]. 天然气地球科学, 2003, 14(4): 267-270.
[15] 刘文汇. 值得重视的有机质演化营力成烃的力化学作用[J]. 天然气地球科学, 1995, 6(4): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!