天然气地球科学

• 非常规天然气 • 上一篇    下一篇

煤储层不同尺寸孔中H2O对CH4解吸扩散的分子模拟研究

杨兆中,韩金轩,付蔷,李小刚,张健   

  1. 1.西南石油大学/油气藏地质及开发工程国家重点实验室,四川 成都 610500;
    2.西南油气田分公司采气工程研究院,四川 广汉 618300;
    3.中联煤层气有限责任公司,北京 100011
  • 收稿日期:2014-08-04 修回日期:2014-10-09 出版日期:2015-05-10 发布日期:2015-05-10
  • 作者简介:杨兆中(1969-),男,四川泸州人,教授,博士生导师,主要从事油气藏增产改造理论,技术和非常规天然气开发等科研和教学工作. E-mail:yzzycl@vip.sina.com.
  • 基金资助:

    “十二五”国家科技重大专项第42项目第2课题(编号:2011ZX05042-002-001)资助.

The Molecular Simulation of the Influence of H2O on CH4 Desorption and Diffusion in Pores with Different Size of Coal Reservoirs

YANG Zhao-zhong,HAN Jin-xuan,FU Qiang,LI Xiao-gang,ZHANG Jian   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,
    Chengdu 610500,China;
    2.Gas Recovery Technology Institute of Southwest Oil and Gas Branch,Guanghan 618300,China;
    3.China United Coalbed Methane Corporation Ltd.,Beijing 100011
  • Received:2014-08-04 Revised:2014-10-09 Online:2015-05-10 Published:2015-05-10

摘要:

模拟煤储层中甲烷(CH4)在不同孔径中不同水分下的解吸和扩散过程,讨论孔径、含水率、温度和压力与CH4解吸扩散的关系。结果表明,狭缝的壁面叠加效应会显著影响H2O分子的吸附/解吸,使H2O分子集中分布在狭缝孔的中间位置。当孔间距逐渐增大时,双侧壁面叠加效应逐渐转化为单侧壁面的表面效应对H2 O分子的吸附,使H2O分子的分布由中间转为两边。含水率的增加对CH4解吸的影响程度增加,CH4的解吸量呈减小趋势,但受温度影响规律不明显。在1nm狭缝孔中,低压时的水分对CH4解吸的影响程度大于高压下的情况。在2nm狭缝孔中,当含水率由2.35%增加至5%时,低压时的水分对CH4解吸的影响程度则开始小于高压下的情况。在5nm狭缝孔中,随着压力的降低,含水率对CH4解吸量的影响变得不明显,说明在解吸过程中,压力降到某一值后,改变含水率并不会促进CH4的解吸;当含水率超过2.35%时,含水率的增加仍然对CH4的解吸产生影响,说明2.35%并不是石墨狭缝孔的水分临界值,但由于随着含水率的增加,CH4所受的影响程度逐渐变小,因此临界值可能存在。微孔中水的吸附热和微孔对吸附质分子的强吸附势使孔径和含水率显著影响CH4的扩散系数,而温度和压力对CH4的扩散系数则影响较小。

关键词: 煤层气, 含水率, 孔径, 解吸, 扩散, 分子模拟

Abstract:

Desorption and diffusion of methane (CH4)under different moistures in different size pores of coal reservoirs were simulated.The relationships between pore size,moisture,temperature,pressure and desorption/diffusion of CH4 were discussed.The results show that (1)the wall superimposed effect of the pore can significantly affect the adsorption/desorption of H2O molecules,so H2O molecules concentrate distribution in the middle of the pore.With increase of pore size,the wall superimposed effect of the pore gradually transforms into surface effect of two sides of the wall so that H2O molecules concentrate distribution on both sides|(2)With the increase of the moisture content,the influence of the moisture on CH4 desorption capacity increases,and CH4 desorption capacity shows a trend of decrease,but the temperature effect is not obvious|(3)In the 1nm slit pore,the influence of the moisture on CH4 desorption under low pressure is greater than that under high pressure|(4)In the 2nm slit pore,when the moisture content increases form 2.35% to 5%,the moisture impact on CH4 desorption under low pressure is less than that of high pressure|(5)In the 5nm slit pore,with the decrease of pressure,the influence of the moisture content on CH4 desorption capacity becomes not obvious,which explains that when the pressure drops to a certain value,changes of the moisture content will not promote CH4 desorption.When the moisture content is more than 2.35%,the increase of the moisture content still affect CH4 desorption,which explains that 2.35% is not the moisture critical value of the graphite slit pore.However,with the increase of the moisture content,CH4 desorption is less affected gradually,so the critical value may exist|(6)Adsorption heat of water in micropores and adsorption potential from micropores to adsorbates will significantly affect the diffusion coefficient of CH4,while temperature and pressure less affect it.

Key words: Coalbed methane, Moisture content, Pore size, Desorption, Diffusion, Molecular simulation

中图分类号: 

  • TE122.2

[1]Yu Bufan,Wang Youan.Technical Manual of Prevention and Control of Gas Disaster in Coal Mines[M].Beijing:Coal Industry Publishing House,2000:27-30.[于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000:27-30.]
[2]Busch A,Gensterblum Y.CBM and CO2-ECBM related sorption process in coal:A review[J].International Journal of Coal Geology,2011,87(2):49-71.
[3]Zhang Shiyin,Sang Shuxun.Influence mechanism of liquid water on methane adsorption of coals with different ranks[J].Acta Geologica Sinica,2008,82(10):1350-1354.[张时音,桑树勋.液态水影响不同煤级煤吸附甲烷的差异及其机理[J].地质学报,2008,82(10):1350-1354.]
[4]Sang Shuxun,Zhu Yanming,Zhang Jing,et al.Experiments of the influence of water on coalbed methane adsorption:the coal reservoir in the south of Qinshui Basin[J].Chinese Science Bulletin,2005,50(1):70-75.[桑树勋,朱炎铭,张井,等.液态水影响煤吸附甲烷的实验研究:以沁水盆地南部煤储层为例[J].科学通报,2005,50(1):70-75.]
[5]Nie Baisheng,He Xueqiu,Wang Enyuan,et al.Micro-mechanism of coal adsorbing water[J].Journal of China University of Mining & Technology,2004,33(4):380-383.[聂百胜,何学秋,王恩元,等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):380-383.]
[6]Li Zhaidong,Ji Yuping,Liu Kunpeng.Experimental study of moisture on 22 coal seam gas adsorption and desorption rules[J].Coal,2012,21(5):4-7.[李寨东,姬玉平,刘坤鹏.水分对二2煤层瓦斯吸附解吸规律的实验研究[J].煤,2012,21(5):4-7.]
[7]Nishino J.Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal[J].Fuel,2001,80(5):757-764.
[8]Zhao Kairong.Molecular Simulation of the Interaction between Hami Inertinite Structure and Gases of CH4,CO2 and H2O[D].Taiyuan:Taiyuan University of Technology,2011.[赵凯荣.哈密煤惰质组结构与CH4、CO2、H2O气体间的相互作用分子模拟[D].太原:太原理工大学,2011.]
[9]Wu Wenzhong.Molecular Simulation Study of the Structure of Shendong Inertinite and the Interaction of CH4,CO2,and H2O[D].Taiyuan:Taiyuan University of Technology,2010.[吴文忠.神东煤惰质组结构特征及其与CH4、CO2和H2O相互作用的分子模拟[D].太原:太原理工大学,2010.]
[10]Zheng Zhong.Molecular Simulation Study of the Structure of Shendong Vitrinite and the Adsorption of CH4,CO2and H2O[D].Taiyuan:Taiyuan University of Technology,2009.[郑仲.神东煤镜质组结构特征及其对CH4、CO2和H2O吸附的分子模拟[D].太原:太原理工大学,2009.]
[11]Zhao Long,Qin Yong,Yang Zhaobiao,et al.Study on supercritical isothermal adsorption model of methane in coal[J].Natural Gas Geoscience,2014,25(5):753-760.[赵龙,秦勇,杨兆彪,等.煤中超临界甲烷等温吸附模型研究[J].天然气地球科学,2014,25(5):753-760.]
[12]Jiang Wenping,Zhang Qun,Cui Yongjun.Quantum chemistry characteristics of coal adsorbing gas and their applications[J].Natural Gas Geoscience,2014,25(3):444-452.[降文萍,张群,崔永君.煤吸附气体的量子化学特征及其应用[J].天然气地球科学,2014,25(3):444-452.]
[13]Gensterblum Y,Merkel A,Busch A,et al.High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture[J].International Journal of Coal Geology,2013,118:45-57.
[14]Day S,Sakurovs R,Weir S.Supercritical gas sorption on moist coals[J].International Journal of Coal Geology,2008,74(3/4):203-214.
[15]Guo Shumin,Duan Xiaoqun,Xu Chengfa.Moisture content under coal reservoir condition study on the determination method of balance moisture[J].Journal of Jiaozuo Institute of Technology:Natural Science,2004,23(2):157-160.[郭淑敏,段小群,徐成法.煤储层条件下平衡湿度测定方法研究[J].焦作工学院学报:自然科学版,2004,23(2):157-160.]
[16]Jing Wen.Molecular Simulation of Adsorption and Diffusion of Methane in Deformed Coal[D].Taiyuan:Taiyuan University of Technology,2010.[荆雯.甲烷在构造煤中吸附和扩散的分子模拟[D].太原:太原理工大学,2010.]
[17]Mahajan O P,Walker Jr P L.Water adsorption on coals[J].Fuel,1970,50(3):308-317.
[18]Darcey J R,Clunie J C,Thomas D G.The adsorption of water by Saran charcoal[J].Transactions of the Faraday Society,1958,54:250-256.
[19]Mahajan O P.CO2 surface area of coals:A 25 year paradox[J].Carbon,1991,29(6):735-742.
[20]Iiyama T,Nishikawa K,Suzuki T,et al.Study of the structure of a water molecular assembly in a hydrophobic nanospace at low temperature with in situ X-ray diffraction[J].Chemical Physics Letters,1997,274(1-3):152-158.
[21]Jingyi J T,Daxiong S C.Adsorption Science[M].Beijing:Chemical Industry Press,2010:84-88.[近藤精一,石川达雄.吸附科学[M].北京:化学工业出版社,2010:84-88.]

[1] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[2] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[3] 林伯韬,陈渊,陈勉,金衍,蒋峥. 多峰孔径分布拟合模型在页岩孔隙结构分析中的应用[J]. 天然气地球科学, 2018, 29(3): 397-403.
[4] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[5] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[6] 杨文新,李继庆,苟群芳. 四川盆地焦石坝地区页岩吸附特征室内实验[J]. 天然气地球科学, 2017, 28(9): 1350-1355.
[7] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[8] 韩元红,范明,申宝剑,俞凌杰,杨振恒,钱门辉. 富有机质页岩解吸气地球化学特征及其指示意义[J]. 天然气地球科学, 2017, 28(7): 1065-1071.
[9] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[10] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[11] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[12] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
[13] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[14] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[15] 郭晨,夏玉成,卢玲玲,任亚平. 黔西比德—三塘盆地多层叠置独立含煤层气系统发育规律与控制机理[J]. 天然气地球科学, 2017, 28(4): 622-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!