天然气地球科学

• 非常规天然气 • 上一篇    下一篇

基于分形理论的页岩储层微观孔隙结构评价

王欣,齐梅,李武广,胡永乐,刘佳,赵凯   

  1. 1.中国石油勘探开发研究院,北京 100083;
    2.中国石油西南油气田分公司勘探开发研究院,四川 成都 610041;
    3.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007
  • 收稿日期:2014-09-25 修回日期:2014-11-04 出版日期:2015-04-10 发布日期:2015-04-10
  • 作者简介:王欣(1986-),女,黑龙江绥化人,博士研究生,主要从事非常规油气藏开发方案设计及开发评价研究. E-mail:meer77@outlook.com.
  • 基金资助:

    国家科技重大专项“全球剩余油气资源研究及油气资产快速评价技术”(编号:2008ZX05028);“南方海相页岩气开采试验”(编号:2012ZX05018-006)联合资助.

Micro-structure Evaluation of Shale Gas Reservoir Based on Fractal Theory

WANG Xin,QI Mei,LI Wu-guang,HU Yong-le,LIU Jia,ZHAO Kai   

  1. 1.Research Institute of Petroleum Exploration & Development,PetroChina,Beijing 100083;
    2.Exploration and Development Institute of Southwest Oil & Gasfield Company,PetroChina,Chengdu 610041,China;
    3.Research Institute of Petroleum Exploration and Development-Langfang,PetroChina,Langfang 065007,China
  • Received:2014-09-25 Revised:2014-11-04 Online:2015-04-10 Published:2015-04-10

摘要:

页岩储层微观孔隙结构评价对页岩气勘探开发具有重要的意义,为了更有效地研究页岩储层微观孔隙结构特征,利用高压压汞实验结合分形理论对孔隙结构进行分析。高压压汞结果显示岩样孔径主要分布在3~18nm范围内,岩样孔隙以微孔和过渡孔为主,微孔和过渡孔提供了大部分孔体积。岩样比表面积主要由微孔贡献,微孔和过渡孔提供了页岩气主要的吸附空间。分形维数分析结果表明:页岩岩样的分形分布可明显的分为2段, 过渡孔、中孔和大孔的分形维数接近3,说明该部分孔隙非均质性强,体现出较强的分形特征;微孔的分形维数小于1,分析原因可能是压汞实验仅可以描述微孔的一部分,对孔径<3nm的微孔描述不到,因此对微孔的孔隙结构评价不够全面,使分形维数的计算结果超出理论范围。

关键词: 页岩气, 孔隙结构, 压汞实验, 分形理论, 分形维数

Abstract:

Micro-structure evaluation of shale gas reservoir is the basis of shale gas exploration and development.High-pressure mercury injection and the calculation principle of fractal dimension of porous structure are employed to study the pore structure of shale and the pore structure parameters can also be obtained.The results of high pressure mercury injection show that the core diameter is mainly in the range of 3-18nm,and the micropores and transitional pores are the main pore in shales.Micropore is the primary contributor to specific surface area and functions as the main adsorption space.The fractal dimension analysis results show that the fractal distribution of shales can be obviously divided into two sections: the fractal dimension of transitional pores,mesopores and macropores is close to 3,which indicate that this part of the pore is strongly heterogeneous and the distribution of pore structure is uneven.The fractal dimension of micropores is less than 1.The result is mercury injection experiment cannot describe the pores with a diameter less than 3nm,and the pore structure evaluation of micropores is not comprehensive enough,so that the fractal dimension is beyond the scope of theory.

Key words: Shale gas, Pore structure, Mercury injection experiment with large specific surface, Fractal dimension

中图分类号: 

  • TE132.3

[1]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J].Acta Petrolei Sinica,2012,33(3):419-427.[田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.]
[2]Jiao Shujing,Han Hui,Weng Qingping,et al.Scanning electron microscope analysis of porosity in shale[J].Journal of Chinese Electron Microscopy Society,2012,31(5):432-436.[焦淑静,韩辉,翁庆萍,等.页岩孔隙结构扫描电镜分析方法研究[J].电子显微学报,2012,31(5):432-436.]
[3]Daniel J K,Ross D J K,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927.
[4]Chen Huanqing,Cao Chen,Liang Shuxian,et al.Research advances on reservoir pores[J].Natural Gas Geoscience,2013,24(2):227-237.[陈欢庆,曹晨,梁淑贤,等.储层空隙结构研究进展[J].天然气地球科学,2013,24(2):227-237.]
[5]Zhao Xi,Ma Weijiao,Min Caizheng.Pore system study of Lower Jurassic shale in Shizhu synclinorium in the middle Yangtze region[J].Journal of Oil and Gas Technology,2013,35(10):177-179.[赵习,麻伟娇,闵才政.中扬子地区石柱复向斜下侏罗统页岩孔隙研究[J].石油天然气学报:江汉石油学院学报,2013,35(10):177-179.]
[6]Bustin R M,Bustin A M M,Cui X,et al.Impacts of shale properties on pore structure and storage characteristics[C].Paper 119892,Fort Worth Presented at the 2008 Shale Gas Production Conference:TX,November,16-18.2008.
[7]Qi Lingling,Wang Zhaofeng,Yang Hongmin,et al.Study on porosity of coal samples based on low temperature nitrogen adsorption method and mercury porosimetry[J].Coal Science and Technology,2012,40(8):36-39,87.[戚灵灵,王兆丰,杨宏民,等.基于低温氮吸附法和压汞法的煤样孔隙研究[J].煤炭科学技术,2012,40(8):36-39,87.]
[8]Wang Ruifei,Chen Mingqiang,Sun Wei,et al.The research of micro-pore structure in super-low permeability sandstone reservoir of the Yanchang Formation in Ordos Basin[J].Geological Review,2008,54(2):270-278.[王瑞飞,陈明强,孙卫.鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J].地质评论,2008,54(2):270-278.]
[9]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.[杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.][JP]
[10]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.[杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.]
[11]Hu Lin,Zhu Yanming,Chen Shangbin,et al.Fractal characteristics of shale pore structure of Longmaxi Formation in Shuanghe area in southern Sichuan[J].Xinjiang Petroleum Geology,2013,34(1):79-82.[胡琳,朱炎铭,陈尚斌,等.蜀南双河龙马溪组页岩孔隙结构的分形特征[J].新疆石油地质,2013,34(1):79-82.]
[12]Cui Jingwei,Zou Caineng,Zhu Rukai,et al.New advances in shale porosity research[J].Advances in Earth Science,2012,27(12):1319-1325.[崔景伟,邹才能,朱如凯,等.页岩孔隙研究新进展[J].地球科学进展,2012,27(12):1319-1325.]
[13]Yang Shenglai,Wei Junzhi.Reservoir Physical[M].Beijing:China Industry Press,2010:225-229.[杨胜来,魏俊之.油层物理学[M].北京:石油工业出版社,2010:225-229.]
[14]Sing K S W,Everett D H,Haul R A W.et al.Reporting physiosorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure and Applied Chemistry,1985,57(4):603-619.
[15]International Union of Pure and Applied Chemistry(IUPAC).Manual on catalyst characterisation[J].Pure and Applied Chemistry,1991,63(9):1227-1246.
[16]Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks in mudrocks and adescriptive classification for matrix related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[17]Zhong Taixian,Wang Hongyan,Liu Honglin.Pore structure of marine shale in southern China[J].Natural Gas Industry,2012,32(9):1-4.[钟太贤.中国南方海相页岩孔隙结构特征[J].天然气工业,2012,32(9):1-4.]
[18]Xoaoth B B.Coal and Gas Outburst[M].Song Shizhao,Wang Youan,translation.Beijing:China Industry Press,1966.[霍多特.煤与瓦斯突出[M].宋士钊,王佑安,译.北京:中国工业出版社,1996.]
[19]Tang Shuheng,Zhang Jingping,Wu Minjie.The pore structure characteristic about the sapropelic coal[J].Natural Gas Geoscience,2013,24(2):247-251.[唐书恒,张静平,吴敏杰.腐泥煤孔隙结构特征研究[J].天然气地球科学,2013,24(2):247-251.]
[20]Han Hui,Zhong Ningning,Jiao Shujing,et al.Scanning electron microscope observation of pore in mudstone and shale[J].Journal of Chinese Electron Microscopy Society,2013,32(4):325-330.[韩辉,钟宁宁,焦淑静,等.泥页岩孔隙的扫描电子显微镜观察[J].电子显微学报,2013,32(4):325-330.]
[21]Huang Zhenkai,Chen Jianping,Xue Haitao,et al.Microstructural characteristics of the Cretaceous Qingshankou Formation shale,Songliao Basin[J].Petroleum Exploration and Development,2013,40(1):58-65.[黄振凯,陈建平,薛海涛,等.松辽盆地白垩系青山口组泥页岩孔隙结构特征[J].石油勘探与开发,2013,40(1):58-65.]
[22]Yin Zhijun,Sheng Guojun,Wang Chunguang.Fractal dimension of varied pore within coal based on mercury intrusion method[J].Metal Mine,2011,12(9):54-57.[尹志军,盛国君,王春光.基于压汞法的煤岩各段孔隙的分形特征[J].金属矿山,2011,12(9):54-57.]

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[9] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[10] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[11] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[15] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!