天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩气在基质纳米孔隙中的渗流模型

吴剑,常毓文,梁涛,郭晓飞,陈新彬   

  1. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2014-02-26 修回日期:2014-07-01 出版日期:2015-03-10 发布日期:2015-03-10
  • 作者简介:吴剑(1986-),男,贵州黔东南人,博士研究生,主要从事油藏工程与油气开发规划研究.E-mail:wusword668@163.com.
  • 基金资助:
    国家科技重大专项“我国油气剩余可采储量分布、增长潜力与开发理论”(编号:2011ZX05043-002)资助.
     

Shale Gas Flow Model in Matrix Nanoscale Pore

WU Jian,CHANG Yu-wen,LIANG Tao,GUO Xiao-fei,CHEN Xin-bin   

  1. Research Institute of Petroleum Exploration & Development,CNPC,Beijing,100083
  • Received:2014-02-26 Revised:2014-07-01 Online:2015-03-10 Published:2015-03-10

摘要:

基质孔隙中页岩气包括孔隙中的自由气、孔隙壁面的吸附气、溶解于有机质中的溶解气,大量文献显示页岩孔隙和喉道皆为纳米级,尽管孔隙小、气体扩散慢,但页岩基质比表面较大、溶解气量大,溶解气的扩散作用具有重要影响。根据Farzam Javadpour渗流理论,假设页岩基质为岩石颗粒、黏土、干酪根的均质体,认为基质纳米孔隙中气体运移是压力作用下气体滑脱、克努森扩散、气体吸附解吸、溶解于干酪根中的气体向孔隙动力扩散等共同作用的结果,且吸附气符合Langmuir等温吸附机理,从而采用微元法推导出页岩气基质孔隙渗流模型。

关键词:
页岩气,
渗流单元, 纳米孔隙, 渗流模型, 非常规天然气

Abstract:

Matrix shale gas includes free gas stored in pores,adsorbed gas in pore walls,soluble gas in solid organic materials.Shale pores are nanometer and pore throat apertures are microport by literature investigation.Although shale matrix pores are very small and soluble gas diffusion is slow,surface to volume ratio is comparatively large,soluble gas quantity is substantial,soluble gas diffusion is very important.According to Javadpour flow theory,shale matrix is assumed as homogeneous rock particles,clay,kerogen reservoir.Shale gas migration is slippage under press force,Knudsen diffusion,adsorbed gas desorption and soluble gas diffusion combined effect,gas adsorption-desorption follows Langmuir's isotherm,then shale gas matrix pore flow model is lastly derived by infinitesimal method.

Key words: Shale gas, Flow unit, Nanopores, Flow model, Unconventional natural gas

中图分类号: 

  • TE132.2

[1]Zou Caineng.Unconventional Oil and Gas Geology[M].Beijing:Geological Publishing House,2011:128-145.[邹才能.非常规油气地质[M].北京:地质出版社,2011:128-145.]
[2]Guo Qiulin,Chen Xiaoming,Song Huanqi,et al.Evolution and models of shale porosity during burial process[J].Natural Gas Geoscience,2013,24(3):339-448.[郭秋麟,陈晓明,宋焕琪,等.泥页岩埋藏过程孔隙度演化与预测模型探讨[J].天然气地球科学,2013,24(3):339-448.]
[3]Chen Xiaoming,Li Jianzhong,Zheng Min,et al.Kerogen solution theory and its exploratory application in shale gas assessment[J].Natural Gas Geoscience,201,23(1):14-18.[陈晓明,李建忠,郑民,等.干酪根溶解理论及其在页岩气评价中的应用探索[J].天然气地球科学,201,23(1):14-18.]
[4]Creties D J,Charles M B.Coalbed-gas and shale-gas reservoirs[J].Journal of Petroleum Technology,2008,60(2):92-99.
[5]Roberto Aguilera.Flow Units:From Conventional to Tight Gas to Shale Gas Reservoirs[C].SPE 132845,2010:27-30.
[6]Farzam Javadpour,Fisher M U.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
[7]Farzam Javadpour.Nanopores and apparent permeability of gas flow in mudrocks(shale and silstone)[J].Journal of Canadian Petroleum Technology,2009,48(8):16-21.
[8]Vivek Swami,Settari.A Pore Scale Gas Flow Model for Shale Gas reservoir[C].SPE 155756,2012:5-7.
[9]Vivek Swami,Settari A,Farzam J.A Numerical Model For Multi-Mechanism Flow in Shale Gas Reservoir with Application to Laboratory Scale Testing[C].SPE 164840,2013:10-13.
[10]Rouzbeh G M,Farzam J,Davud D.Contribution of Methane Molecular Diffusion in Kerogen to Gas-in-Place and production[C].SPE 165376,2013:19-25.
[11]Chen Qiang,Kang Yili,You Lijun,et al.Mirco-pore structure of shale gas and its effect on gas mass transfer[J].Natural Gas Geoscience,2013,24(6):1298-1304.[陈强,康毅力,游利军,等.页岩气微孔结构及其对气体传质的影响[J].天然气地球科学,2013,24(6):1298-1304.]
[12]Li Zhifeng,Li Zhiping,Miao Lili,et al.Gas flow characteristics in nanoscales pores of shale gas[J].Natual Gas Geoscience,2013,24(5):1042-1047.[李智锋,李治平,苗丽丽,等.页岩气藏纳米孔隙气体渗流特征分析[J].天然气地球科学,2013,24(5):1042-1047.]
[13]Vahid S,Corlos Torres-Verdin,Farzam J.Numerical Simulation of Shale Gas Production:from Pore-Scale Modeling of Slip-flow,Knudsen Diffusion,and Langmuir Desorption to Reservoir Modeling of Compressible Fluid[C].SPE 144355,2011:14-16.
[14]Vahid S,Corlos Torres-Verdin,Farzam J.Pore-Scale Quantification of Apparent Permeability and Electrical Resistivity of Hydrocarbon-bearing Shale in the Presence of Gas Desorption[C].SPWLA 2011-K,2011:11-9.
[15]Guo Chaohua,Bai Baojun,Wei Mingzhen,et al.Study on Gas Permeability in Nano Pores of Shale Gas Reservoir[C].SPE 167179,2013:1-11.
[16]Rahmani D,Akkutlu I Y.Pore-Size Dependence of Fluid Phase Behavior and the Impact on Shale Gas Reserves[C].SPE 168939,2013:1-22.
[17]Robert A Heidemann,Ayodeji A Jeje,Farhang Mohtadi,et al.An Introduction to the Properties of Fluids and Solids[M].Calgary,Alberta:University of Calgary Press,1984:5-15.
[18]Gordon P Brown,Albert Dinardo,George K Cheng,et al.The flow of gases in pipes at low pressures[J].Journal of Applied Physics,1946,17:802-813.

[1] 苏佳纯,张金川,朱伟林. 非常规天然气经济评价对策思考[J]. 天然气地球科学, 2018, 29(5): 743-753.
[2] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[3] 田冷,李鸿范,马继翔,谢全,顾岱鸿,任效星. 基于启动压力梯度与应力敏感的致密气藏多层多级渗流模型[J]. 天然气地球科学, 2017, 28(12): 1898-1907.
[4] 邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.
[5] 张瑜,闫建萍,贾祥娟,李艳芳,邵德勇,于萍,张同伟. 四川盆地五峰组—龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系[J]. 天然气地球科学, 2015, 26(9): 1755-1762.
[6] 樊怀才,钟兵,刘义成,杨学锋,冯曦,邓惠. 三重介质底水气藏非稳态水侵规律研究[J]. 天然气地球科学, 2015, 26(3): 556-563.
[7] 李智锋,李治平,苗丽丽,付应坤,王 杨,谢 姗. 页岩气藏纳米孔隙气体渗流特征分析[J]. 天然气地球科学, 2013, 24(5): 1042-1047.
[8] 谢维扬, 李晓平. 水力压裂缝导流的页岩气藏水平井稳产能力研究[J]. 天然气地球科学, 2012, 23(2): 387-392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!