天然气地球科学

• 天然气开发 • 上一篇    下一篇

三重介质底水气藏非稳态水侵规律研究

樊怀才,钟兵,刘义成,杨学锋,冯曦,邓惠   

  1. 西南油气田分公司勘探开发研究院,四川 成都 610041
  • 收稿日期:2014-11-21 修回日期:2014-12-25 出版日期:2015-03-10 发布日期:2015-03-10
  • 作者简介:樊怀才(1983-),男,安徽亳州人,工程师,博士,主要从事油气藏工程及油气渗流理论研究.E-mail:fanhuaicai@163.com.
  • 基金资助:

    国家科技重大专项“复杂碳酸盐岩气藏开发技术”(编号:2011ZX05015-03);西南油气田分公司2012年博士后科研项目“三重介质底水气藏治水开发机理研究”(编号:20120305-12)联合资助.[ZK)]

Studies on Transient Water Invasion Mechanism of the Triple Porosity Gas Reservoir with Bottom-water

FAN Huai-cai,ZHONG Bing,LIU Yi-cheng,YANG Xue-feng,FENG Xi,DENG Hui   

  1. Exploration and Development Research Institute of Southwest Oil & Gasfield Company,PetroChina,Chengdu 610041,China
  • Received:2014-11-21 Revised:2014-12-25 Online:2015-03-10 Published:2015-03-10

摘要:

裂缝水窜是三重介质底水气藏主要的水侵特征,水侵规律受储层特征、水体大小及生产压差影响显著。通过将气藏简化为“上气下水”的圆柱形物理模型,并将底水侵入气藏的过程抽象为溶洞系统和基岩系统中的地层水向裂缝系统窜流,沿裂缝系统经气水界面侵入气层,建立了底水非稳态水侵渗流数学模型,采用分离变量法、贝塞尔函数及拉普拉斯变换等现代数学分析方法对模型进行求解,求取了该模型裂缝系统压力的精确解,并利用加权平均法获得了气水界面处的平均压力。在此基础上,运用Duhamel原理建立了气水界面处水侵速度和气藏累计水侵量的计算方法。通过数值反演得到了三重介质底水气藏非稳态水侵典型曲线,将非稳态水侵过程划分成“裂缝系统早期线性流、裂缝系统径向流、溶洞系统向裂缝系统窜流、缝—洞系统径向流、基质系统向裂缝系统窜流及孔—缝—洞系统径向流”6个阶段,分析了水体大小、储层物性、裂缝系统水平渗透率和垂直渗透率之比及生产工作制度对非稳态水侵规律的影响,研究方法和结果对合理分析三重介质底水气藏水侵动态特征及优化气藏治水开发方案具有一定的指导意义。

关键词: 三重介质, 底水气藏, 非稳态水侵, 渗流模型, 水侵量

Abstract:


Fracture water breakthrough is the main characteristics of the water influx in the triple porosity gas reservoir with bottom-water.The law of water invasion is influenced by the reservoir characteristics,the size of the bottom aquifer and the producing pressure.Based on the characteristics of water invasion in the triple medium bottom-water gas reservoir,the gas reservoir is simplified as a cylindrical physical model that is "the gas horizon over the aquifer".In this model,the seepage flow in the triple porosity is abstracted as a process that water in the cave system and the matrix system channels to fracture system,and is produced through the fracture system.A transient seepage mathematical model for aquifer triple is established,and an accurate solution to the pressure of the fracture system is obtained by means of modern mathematical methods including the method of separation of variables,Bessel function and Laplace transformation,and the average pressure of gas-water interface is obtained by using the area weighted technique.Furthermore,the method of computing the water invasion rate on the gas-water interface and cumulative water influx that intrudes into gas reservoir is established by applying the Duhamel principle.The typical curve of transient water invasion in the triple porosity gas reservoir with bottom-water is plotted by means of the numerical inversion,the process of bottom water invasion is divided into six sections,including the early linear flow of fracture system,radial flow of fracture system,the channeling flow from cave system to fracture system,the radial flow of fracture and cave system,the channeling flow from matrix system to fracture system and the radial flow of the whole system.The influence on transient water invasion mechanism is analyzed such as aquifer size,interstitial physical-property parameters,the ratio of the horizontal permeability and vertical permeability,production system and so on.The methods and results of this research contribute to reasonable analyses on the dynamic characteristics of water invasion and optimization of the preventing water development plan of the triple porosity gas reservoir with bottom-water.

Key words: Triple porosity gas reservoir, Gas reservoir with bottom-water, Transient water invasion, Seepage model, Cumulative water influx

中图分类号: 

  • TE357.1

[1]Zhang Xianjun,Zhu Changjian,Shi Jun,et al.Characteristics of ordovician carbonate reservoirs in Hetian river gasfield and its adjacent areas[J].Natural Gas Geoscience,2008,19(1):120-125.[张现军,朱长见,师骏,等.塔里木盆地和田河气田及其周缘地区奥陶系碳酸盐岩储集层特征探讨[J].天然气地球科学,2008,19(1):120-125.]
[2]Wang Hongqiu,Liu Weifang,Zheng Duoming,et al.Types and causes of “none-string beads” fracture-cavity reservoirs in ordovician carbonate of Tarim Basin[J].Natural Gas Geoscience,2011,22(6):982-988.[王洪求,刘伟,郑多明,等.塔里木盆地奥陶系碳酸盐岩“非串珠状”缝洞型储层类型及成因[J].天然气地球科学,2011,22(6):982-988.]
[3]Yan Fengming,Kang Yili,Li Song,et al.Simulated experiment on stress sensitivity in fractured-vuggy reservoir[J].Natural Gas Geoscience,2010,21(3):489-493.[闫丰明,康毅力,李松,等.裂缝—孔洞型碳酸盐岩储层应力敏感性实验研究[J].天然气地球科学,2010,21(3):489-493.]
[4]Zhang Fengdong,Kang Yili,You Lijun,et al.Aqueous trapping damage models for fracture-pore tight sandstone gas reservoirs[J].Natural Gas Geoscience,2009,20(5):812-816.[张凤东,康毅力,游利军,等.裂缝—孔隙型致密砂岩气藏水相圈闭损害模式[J].天然气地球科学,2009,20(5):812-816.]
[5]Fan Huaicai,Zhong Bing,Li Xiaoping,et al.Studies on water invasion mechanism of fractured-watered gas reservoir[J].Natural Gas Geoscience,201,23(6):1179-1184.[樊怀才,钟兵,李晓平,等.裂缝型产水气藏水侵机理研究[J].天然气地球科学,201,23(6):1179-1184.]
[6]Gu Jianwei,Jiang Hanqiao,Wu Yizhi,et al.Studies on water invasion mechanism of fractured-watered gas reservoir[J].Petroleum Geology and Recovery Efficiency,201,19(6):78-81.[谷建伟,姜汉桥,吴义志,等.无夹层底水油藏直井水锥定量描述[J].油气地质与采收率,201,19(6):78-81.]
[7]Guo Boyun,Lee R L-H.A simple approach to optimization of completion interval in oil/water coning systems[J].SPE 23994,1993:249-255.
[8]Jiang Haogang,Kang Hongbin,Wu Bo,et al.Discuss about water coning in the Tahe Oilfield[J].Natural Gas Geoscience,2006,17(2):233-238.[姜昊罡,康红兵,吴波,等.塔河油田水锥探讨[J].天然气地球科学,2006,17(2):233-238.]
[9]Jiang Ping,Zhang Guicai,He Xiaojuan,et al.A dynamic prediction method for bottom water coning[J].Drilling & Production Technology,2007,30(2):71-73.[蒋平,张贵才,何小娟,等.底水锥进的动态预测方法[J].钻采工艺,2007,30(2):71-73.]
[10]Luo Erhui,Hu Yongle.A study of non-Darcy transient flow in triple porosity media with low permeability reservoir[J].Journal of China University of Mining & Technology,2013,42(1):100-104.[罗二辉,胡永乐.三重介质低渗油藏非达西非稳态渗流研究[J].中国矿业大学学报,2013,42(1):100-104.]
[11]Ren Junjie,Guo Ping,Wang Zhouhua.Dynamical characteristic analysis of inclined well in triple medium reservoir[J].Chinese Journal of Hydrodynamics,201,27(1):7-15.[任俊杰,郭平,汪周华.三重介质油藏斜井压力动态特征分析[J].水动力学研究与进展:A辑,201,27(1):7-15.]
[12]Li Jianglong,Zhang Dongli,Wu Yushu.Triple-continuum numerical well test interpretation method for a naturally fractured vuggy reservoir[J].Chinese Journal of Hydrodynamics,201,27(6):640-648.[李江龙,张冬丽,吴玉树.缝洞型油藏三重介质数值试井解释方法研究[J].水动力学研究与进展:A辑,201,27(6):640-648.]
[13]Zhang Dongli,Li Jianglong,Wu Yushu.Influencing factors of the numerical well test model of the triple-continuum in fractured vuggy reservoir[J].Journal of Southwest Petroleum University:Science & Technology Edition,2010,32(6):113-120.[张冬丽,李江龙,吴玉树.缝洞型油藏三重介质数值试井模型影响因素[J].西南石油大学学报:自然科学版,2010,32(6):113-120.]
[14]Xue Chengjin,Dai Weihui,Zhang Jiaosheng.Well test interpretation method for triple media oil reservoir in which fracture communicated with wellbore[J].Oil & Gas Recovery Technology,2003,10(3):39-41.[薛成瑾,戴卫华,张皎生.裂缝与井筒连通的三重介质油藏试井解释方法[J].油气地质与采收率,2003,10(3):39-41.]
[15]Liu Yongliang,Liu Bin,Liu Dawei,et al.Analytic model of single well production performance in triple porosity medium reservoirs[J].Journal of Oil and Gas Technology,2011,33(2):123-127.[刘永良,刘彬,刘大伟,等.三重介质气藏单井生产动态分析模型研究[J].石油天然气学报,2011,33(2):123-127.]
[16]Zhu Bin,Feng Xi.Characteristics of gas well production change in caves-crack-pore triple-medium gas reservoir[J].Drilling & Production Technology,2010,33(1):47-53.[朱斌,冯曦.洞穴—裂缝—孔隙三重介质气藏气井产量变化特征分析[J].钻采工艺,2010,33(1):47-53.]
[17]Luo Erhui,Hu Yongle,Wang Lei,et al.Analysis of production decline curves in naturally vuggy and fractured carbonate reservoir with low permeability media[J].Journal of Daqing Petroleum Institute,201,36(2):86-90.[罗二辉,胡永乐,王磊,等.缝洞型低渗透碳酸盐岩油藏产量递减曲线分析[J].大庆石油学院学报,2013,29(2):86-90.]

[1] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[2] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[3] 田冷,李鸿范,马继翔,谢全,顾岱鸿,任效星. 基于启动压力梯度与应力敏感的致密气藏多层多级渗流模型[J]. 天然气地球科学, 2017, 28(12): 1898-1907.
[4] 方飞飞,李熙喆,高树生,薛蕙,朱文卿,刘华勋,安为国,李程辉. 边、底水气藏水侵规律可视化实验研究[J]. 天然气地球科学, 2016, 27(12): 2246-2252.
[5] 吴剑,常毓文,梁涛,郭晓飞,陈新彬. 页岩气在基质纳米孔隙中的渗流模型[J]. 天然气地球科学, 2015, 26(3): 575-579.
[6] 樊怀才,钟兵,邓惠,刘义成,杨学锋,冯曦,张小涛. 三重介质底水气藏压裂水平井非稳态产能变化规律研究[J]. 天然气地球科学, 2014, 25(11): 1861-1867.
[7] 胡俊坤,李晓平,张健涛,张修明. 计算水驱气藏动态储量和水侵量的简易新方法[J]. 天然气地球科学, 2012, 23(6): 1175-1178.
[8] 谢维扬, 李晓平. 水力压裂缝导流的页岩气藏水平井稳产能力研究[J]. 天然气地球科学, 2012, 23(2): 387-392.
[9] 康晓东,李相方,张国松. 气藏早期水侵识别方法[J]. 天然气地球科学, 2004, 15(6): 637-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!