天然气地球科学

• 天然气地质学 • 上一篇    下一篇

致密砂岩储层不同方向构造裂缝定量预测

高帅,曾联波,马世忠,何永宏,巩磊,赵向原,许文国,唐小梅   

  1. 1.黑龙江省普通高校科技创新团队“断层变形、封闭性及与流体运移”,黑龙江 大庆  163318;2.油气资源与探测国家重点实验室,北京  102249;
    3.长庆油田分公司勘探开发研究院,陕西 西安  710021
  • 收稿日期:2014-05-07 修回日期:2014-06-25 出版日期:2015-03-10 发布日期:2015-03-10
  • 作者简介:高帅(1987-),女,黑龙江齐齐哈尔人,讲师,在读博士,主要从事致密储层裂缝预测及储层评价研究.
  • 基金资助:
    国家自然科学基金项目“非均质性低渗透储层多期裂缝叠加机制研究”(编号:40572080);东北石油大学青年科学基金“基于断层分形生长模式的亚地震断层定量预测”(编号:2013NQ135)联合资助.

Quantitative Prediction of Fractures with Different Directions in Tight Sandstone Reservoirs

GAO Shuai,ZENG Lian-bo,MA Shi-zhong,HE Yong-hong,GONG Lei,ZHAO Xiang-yuan,XU Wen-guo,TANG Xiao-mei   

  1. 1.Science and Technology Innovation Team on Fault Deformation,Sealing and Fluid Migration,
    Daqing 163318,China;2.State Key Laboratory of Petroleum Resource and Prospecting,Beijing 102249,China;
    3.PetroChina Changqing Oilfield Company,Xi′an 710021,China
  • Received:2014-05-07 Revised:2014-06-25 Online:2015-03-10 Published:2015-03-10

摘要:


裂缝是致密砂岩储层的主要渗流通道,控制了地下流体的流动。定量预测不同方向裂缝的发育程度对开发井网的合理部署和提高注水开发效果具有重要意义。以鄂尔多斯盆地姬塬地区长4+5致密砂岩储层为例,提出不同方向构造裂缝定量预测的方法。高角度构造剪切裂缝是研究区致密砂岩储层的主要裂缝类型,其发育程度受古构造应力场、岩性、层厚、沉积相、岩层各向异性等因素控制。古构造应力场控制了裂缝的组系、产状和力学性质,岩性、层厚和沉积相控制了不同部位裂缝的发育程度,而岩层各向异性控制了同一部位不同方向裂缝的发育程度。在构造裂缝形成机理和控制因素分析的基础上,通过有限元数值模拟的方法对裂缝的类型、产状以及不同方向裂缝的密度进行了定量预测。预测结果与岩心和测井资料显示的实际裂缝发育程度相一致。

关键词: 致密砂岩储层, 构造裂缝, 控制因素, 有限元数值模拟, 定量预测

Abstract:

Fractures are the main seepage channels of tight sandstone reservoirs,which control the flow of underground fluid.It is important to predict the development degree of fractures with different directions quantitatively in pattern arrangement and improve the development effect.Taking Chang 4+5 tight sandstone reservoir of Jiyuan area,Ordos Basin as a case study,we presented a method to quantitatively predict the development degree of fractures with different directions.Tectonic shear fracture with high dip angle is the principal fracture type in the study area.The development degree of tectonic fractures is controlled by palaeotectonic stress field,lithology,bedding thickness,sedimentary microfacies and rock anisotropy.Among them,the palaeotectonic stress controlled the fracture group,occurrence and mechanical property.The lithology,bedding thickness,sedimentary microfacies controlled the fracture development degree of different parts,while the rock anisotropy controlled the development degree of fractures with different directions in the same place.Based on analysis of formation mechanism and controlling factors of fractures,we predicted the fracture types,occurrence and density of fractures with different directions quantitatively.The results are consistent with the actual situation obtained from cores and logs.

Key words: Tight sandstone reservoir, Tectonic fracture, Controlling factor, Finite element numerical simulation, Quantitative prediction

中图分类号: 

  • TE122.1

[1]Zeng L B,Li X Y.Fractures in sandstone reservoirs of ultra-low permeability:The Upper Triassic Yanchang Formation in the Ordos Basin,China[J].AAPG Bulletin,2009,93(4):461-477.
[2]Zou Caineng.Unconventional Oil and Gas Geology[M].Beijing:Geological Publishing House,2011:1-12.[邹才能.非常规油气地质[M].北京:地质出版社,2011:1-12.]
[3]Nelson R A.Geologic Analysis of Naturally Fractured Reservoires[M].Houston:Gulf Publishing Company,1985:1-26.
[4]Zeng Lianbo,Gao Chunyu,Qi Jiafu,et al.The distribution rule and seepage effect of the fractures in the ultra-low permeability sandstone reservoir in east Gansu Province,Ordos Basin[J].Science in China:Series D,2008,38(supplementⅠ):44-47.[曾联波,高春宇,漆家福,等.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J].中国科学:D辑,2008,38(增刊Ⅰ):41-47.]
[5]Shang Lin,Dai Junsheng,Jia Kaifu,et al.Numerical simulation for the distribution of different levels of tectonic fractures in carbonate buried hills:Taking Futai Oilfield in Bohai Bay Basin as an example[J].Natural Gas Geoscience,2013,24(6):1260-1267.[商琳,戴俊生,贾开富,等.碳酸盐岩潜山不同级别构造裂缝分布规律数值模拟——以渤海湾盆地富台油田为例[J].天然气地球科学,2013,24(6):1260-1267.]
[6]Wang Pengwei,Chen Xiao,Pang Xiongqi,et al.The controlling of structure fractures on the accumulation of tight sand gas reservoirs[J].Natural Gas Geoscience,2014,25(2):185-191.[王鹏威,陈筱,庞雄奇,等.构造裂缝对致密砂岩气成藏过程的控制作用[J].天然气地球科学,2014,25(2):185-191.]
[7]Wu Yongping,Zhu Zhongqian,Xiao Xiangjiao,et al.Fracture feature of Tertiary reservoir and distribution evaluation in Dina 2 Gas Field[J].Natural Gas Geoscience,2011,22(6):989-995.[吴永平,朱忠谦,肖香姣,等.迪那2气田古近系储层裂缝特征及分布评价[J].天然气地球科学,2011,22(6):989-995.]
[8]Wu H,Pollard D D.An experimental study of the relationship between joint spacing and layer thickness[J].Journal of Structural Geology,1995,17(6):887-905.
[9]William R J.Quantitative evaluation of fractures on Monkshood Anticline,a Detachment Fold in the Foothills of western Canada[J].AAPG Bulletin,1997,81(7):1110-1132.
[10]Zeng Jinguang,Luo Yuanhua,Chen Taiyuan.A method for the study of reservoir fracturing based on structural principal curvatures[J].Acta Mechanica Sinica,198,26(2):202-206.[曾锦光,罗元华,陈太源.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,198,26(2):202-206.]
[11]Murray G H.Quantitative fracture study,Sanish pool,Mckeenzie county,north Dakota[J].AAPG Bulletin,1968,52(1):57-65.
[12]Song Huizhen,Zeng Hairong,Sun Junxiu,et al.Methods of reservoir tectonic fracture prediction and its application[J].Seismology and Geology,1999,21(3):205-213.[宋惠珍,曾海容,孙君秀,等.储层构造裂缝预测方法及其应用[J].地震地质,1999,21(3):205-213.]
[13]Chen Bo,Tian Chonglu.Numerical simulation technique for structural fractures in a reservoir:Case studies[J].Acta Petrolei Sinica,1998,19(4):62-66.[陈波,田崇鲁.储层构造裂缝数值模拟技术的应用实例[J].石油学报,1998,19(4):62-66.]
[14]Li Detong,Wen Shipeng.Numerical simulation technology for structural fracture of reservoir[J] Journal of the University of Petroleum,China,1996,20(5):17-24.[李德同,文世鹏.储层构造裂缝数值模拟技术[J].石油大学学报:自然科学版,1996,20(5):17-24.]
[15]Price N J.Fault and Joint Development in Brittle and Semi-brittle Rock[M].London:Pergamon Press,1966:1-20.
[16]Ding Zhongyi,Qian Xianglin,Huo Hong,et al.A new method for quantitative prediction of tectonic fractures-two factor method[J].Oil & Gas Geology,1998,19(1):3-9.[丁中一,钱祥麟,霍红,等.构造裂缝定量预测的一种新方法—二元法[J].石油与天然气地质,1998,19(1):3-9.]
[17]Yuan Y S,Hu S B,Wang H J,et al.Meso-Cenozoic tectonothermal evolution of Ordos Basin,central China:Insights from newly acquired vitrinite reflectance data and a revision of existing paleothermal indicator data[J].Journal of Geodynamics,2007,44(1):33-46.
[18]Yang H,Fu J H,Wei X S,et al.Sulige field in the Ordos Basin:Geological setting,field discovery and tight gas reservoirs[J].Marine and Petroleum Geology,2008,25(4/5):387-400.
[19]Wang Qiyu,Zheng Rongcai,Liang Xiaowei,et al.Feature and genesis of the reservoir fractures of Upper Triassic Yanchang Formation in Jiyuan area,Ordos Basin[J].Journal of Chengdu University of Technology:Science & Technology Edition,2011,38(2):220-228.[王启宇,郑荣才,梁晓伟,等.鄂尔多斯盆地姬塬地区延长组裂缝特征及成因[J].成都理工大学学报:自然科学版,2011,38(2):220-228.]
[20]Liu Zhidi,Zhao Jingzhou.Recognizing oil shale fracture of Chang 7 member in Ordos Basin using logging data[J].Natural Gas Geoscience,2014,25(2):259-265.[刘之的,赵靖舟.鄂尔多斯盆地长7段油页岩裂缝测井定量识别[J].天然气地球科学,2014,25(2):259-265.]
[21]Zeng Lianbo,Li Zhongxing,Shi Chengen,et al.Characteristics and origin of fractures in the extra low-permeability sandstone reservoirs of the Upper Triassic Yanchang Formation in the Ordos Basin[J].Acta Geologica Sinica,2007,81(2):174-180.[曾联波,李忠兴,史成恩,等.鄂尔多斯盆地上三叠统延长组特低渗透砂岩储层裂缝特征及成因[J].地质学报,2007,81(2):174-180.]
[22]Liang Xiaowei,Han Yonglin,Wang Haihong,et al.Fracture characteristics and geological significance of Upper Triassic Yanchang Formation in Jiyuan area,Ordos Basin[J].Lithologic Reservoirs,2009,21(2):49-53.[梁晓伟,韩永林,王海红,等.鄂尔多斯盆地姬塬地区上三叠统延长组裂缝特征及其地质意义[J].岩性油气藏,2009,21(2):49-53.]
[23]Wang Ruifei,Sun Wei.A study on micro cracks in super-low permeability sandstone reservoir of the Upper Triassic Yanchang Formation in the Ordos Basin[J].Geological Review,2009,55(3):444-448.[王瑞飞,孙卫.鄂尔多斯盆地姬塬油田上三叠统延长组超低渗透砂岩储层微裂缝研究[J].地质论评,2009,55(3):444-448.]
[24]Rijken P,Cooke M L.Role of shale thickness on vertical connectivity of fractures:Application of crack-bridging theory to the Austin Chalk,Texas[J].Tectonphysics,2001,337(1-2):117-133.
[25]Bai T,Pollard D D.Fracture spacing in layered rocks:a new explanation based on the stress transition[J].Journal of Structural Geology,2000,22(1):43-57.
[26]Ji S C,Zhu Z M,Wang Z C.Relationship between joint spacing and bed thickness in sedimentary rocks:Effect of interbed slip[J].Geological Magazine,1998,135(5):637-655.
[27]Wu H,Pollard D D.An experimental study of the relationship between joint spacing and layer thickness[J].Journal of Structural Geology,1995,17(6):887-905.
[28]Narr W,Suppe J.Joint spacing in sedimentary rocks[J].Journal of Structural Geology,1991,13(9):1037-1048.
[29]Huang Q,Angelier J.Fracture spacing and its relation to bed thickness[J].Tectonophysis,1989,126(4):355-362.
[30]Zeng Lianbo.Formation and Distribution of Fractures in Low-permeability Sandstone Reservoir[M].Beijing:Science Press,2008:1-4.[曾联波.低渗透砂岩储层裂缝的形成与分布[M].北京:科学出版社,2008:1-4.]
[31]Zeng L B,Zhao J Y,Zhu S J,et al.Impact of rock anisotropy on fracture development[J].Progress in Natural Science,2008,18(11):1403-1408.
[32]Zhou Xingui,Zhang Linyan,Fan Kun.Methods for quantitative prediction of tectonic fractures in compact reservoirs in petroliferous basins and a case study[J].Natural Gas Geoscience,2007,18(3):328-333.[周新桂,张林炎,范昆.含油气盆地低渗透储层构造裂缝定量预测方法和实例[J].天然气地球科学,2007,18(3):328-333.]

[1] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[2] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[3] 王国龙,杜社宽. 准噶尔盆地北三台凸起二叠系梧桐沟组一段碎屑岩储层特征及控制因素[J]. 天然气地球科学, 2018, 29(5): 675-681.
[4] 胡向阳,李宏涛,史云清,肖开华,郭艳东,李浩,高君. 川西坳陷斜坡带蓬莱镇组三段沉积特征与储层分布——以什邡地区JP32砂组为例[J]. 天然气地球科学, 2018, 29(4): 468-480.
[5] 张艳,张春雷,高世臣. 基于SOM和HSV染色技术的致密砂岩储层地震相分析[J]. 天然气地球科学, 2018, 29(2): 259-267.
[6] 任丽华,代俊杰,林承焰,曹铮. 松辽盆地扶新隆起带南部青山口组超压特征及油气地质意义[J]. 天然气地球科学, 2017, 28(7): 1020-1030.
[7] 熊连桥,姚根顺,倪超,熊绍云,沈安江,周刚,郝毅. 川西北地区中泥盆统观雾山组储集层特征、控制因素与演化[J]. 天然气地球科学, 2017, 28(7): 1031-1042.
[8] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[9] 杨智峰,曾溅辉,韩菲,冯枭,冯森,张译丹,乔俊程. 鄂尔多斯盆地西南部长6—长8段致密砂岩储层微观孔隙特征[J]. 天然气地球科学, 2017, 28(6): 909-919.
[10] 刘英杰,黄传炎,岳家恒,郭来源. 陆相湖盆层序地层格架内有机质发育及控制因素分析——以中上扬子建南地区侏罗系东岳庙段为例[J]. 天然气地球科学, 2017, 28(6): 930-938.
[11] 闫海军,贾爱林,冀光,郭建林, 许文壮,孟德伟,夏钦禹,黄航娟. 岩溶风化壳型含水气藏气水分布特征及开发技术对策——以鄂尔多斯盆地高桥区下古气藏为例[J]. 天然气地球科学, 2017, 28(5): 801-811.
[12] 曾庆鲁,张荣虎,卢文忠,王波,王春阳. 基于三维激光扫描技术的裂缝发育规律和控制因素研究——以塔里木盆地库车前陆区索罕村露头剖面为例[J]. 天然气地球科学, 2017, 28(3): 397-409.
[13] 巩磊,高铭泽,曾联波,付晓飞,高志勇,高昂,祖克威,姚嘉琪. 影响致密砂岩储层裂缝分布的主控因素分析——以库车前陆盆地侏罗系—新近系为例[J]. 天然气地球科学, 2017, 28(2): 199-208.
[14] 张凤奇,钟红利,魏登峰,张凤博,柳伟明,刘伟. 鄂尔多斯盆地陕北斜坡东南部长7段致密砂岩油藏成藏物性下限[J]. 天然气地球科学, 2017, 28(2): 232-240.
[15] 周露,莫涛,王振鸿,朱文慧,尚江伟,陈维力,李梅,张琪. 塔里木盆地克深气田超深层致密砂岩储层裂缝分级分组合特征[J]. 天然气地球科学, 2017, 28(11): 1668-1677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!