天然气地球科学

• 非常规天然气 • 上一篇    下一篇

下扬子地台二叠系页岩储集物性特征及控制因素

曹涛涛,宋之光,王思波,夏嘉   

  1. 1.中国科学院广州地球化学研究所有机地球化学国家重点实验室,广东  广州  510640;2.中国科学院大学,北京 100049
  • 收稿日期:2014-02-26 修回日期:2014-04-30 出版日期:2015-02-10 发布日期:2015-02-10
  • 作者简介:曹涛涛(1987-),男,河南商丘人,博士研究生,主要从事页岩气储集物性及含气性研究.E-mail:caotaotao@gig.ac.cn.
  • 基金资助:
    国家重点基础研究发展计划(编号:2012CB214704)|国家油气重大专项(编号:2011ZX05008-002-20)|国家基金面上项目(编号:41273058)联合资助.
     

Physical Property Characteristics and Controlling Factors of Permian Shale Reservoir in the Lower Yangtze Platform

CAO Tao-tao,SONG Zhi-guang,WANG Si-bo,XIA Jia   

  1.  1.State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy
    of Sciences,Guangzhou 510640,China;2.University of Chinese Academy of Sciences,Beijing 100039,China
  • Received:2014-02-26 Revised:2014-04-30 Online:2015-02-10 Published:2015-02-10

摘要:

对选自下扬子芜湖地区昌参1井二叠系的页岩样品进行氮气吸附实验和压汞实验来研究其储集物性特征,并结合地球化学数据分析影响页岩储集物性的因素。研究结果表明页岩比表面积介于4.70~21.86m2/g之间,平均为12.60m2/g,其中81.80%的比表面积是来自微孔的贡献|页岩孔隙度介于1.18%~4.95%之间,多数页岩样品孔隙度低于4%,其中中大孔(或裂隙孔)贡献了66.38%的孔隙度|渗透率介于(0.001~15.56)×10-3μm2之间。通过对页岩储集物性影响因素分析,可以得出:①TOC 含量是页岩比表面积主要的控制因素,随着TOC含量的增加,比表面积明显增加|②孔隙度随TOC含量增加有明显降低的趋势,可能与孤立分散的有机质粒内孔与裂缝连通性较差以及有机质充填矿物孔隙有关,这说明了有机质主要是贡献比表面积而非孔隙度;微孔和过渡孔体积与黏土矿物有一定的正相关性,中大孔(或裂隙孔)体积与脆性矿物含量有一定的正相关性,说明脆性矿物和黏土矿物可能共同影响页岩的孔隙度;③渗透率与排驱压力呈极好的指数负相关性,排驱压力越小,渗透率越高,就越有利于页岩气的开采。
 

关键词: 下扬子地台, 二叠系页岩, 比表面积, 孔隙度, 渗透率

Abstract:

Nitrogen adsorption and mercury intrusion experiments were carried out to study the shale reservoir physical property characteristics and to analyze the controlling factors of Permian shales from well Changcan 1 in Wuhu area in the Lower Yangtze Platform.The results show that the specific surface area is ranging from 4.70m2/g to 21.86m2/g,of which 81.80% is contributed by micropores.The porosities range between 1.18% and 4.95% with most below 4%,and 66.38% of the porosities are from the contribution of mesopores and macropores(crack pores).The permeability is between 0.001×10-3μm2 and 15.56×10-3μm2.Through analyzing the controlling factors,the following conclusions can be drawn:(1)TOC content is the major controlling factor of the specific area for Permian shales|(2)The porosity has an obvious decrease trend with the increase of  TOC content,which may be caused by the isolation and poor connectivity of organic pores with cracks even related to the filling of mineral pore space by organic matter.Micropore and transition-pore volumes have good positive correlation with mineral matter content,while,mesopore and macropore(crack pore)volume has a positive correlation with brittle mineral content|(3)Permeability exhibits an exponential negative correlation with threshold pressure,reflecting the lower the threshold pressure,the higher the permeability and the more beneficial for shale gas production.

Key words:

中图分类号: 

  • TE122.2+3

[1]Jarvie D M.Shale resource systems for oil and gas:Part 1-shale-gas resource systems[C]//Breyer J A.Shale Reservoirs:Giant Resources for the 21st Century.AAPG Memoir 97.Tulsa:The American Association of Petroleum Geologists,2012:69-87.
[2]Mastalerz M,Schimmelmann A,Drobniak A,et al.Porosity of Devonian and Mississippian New Albany shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J].AAPG Bulletin,2013,97(10):1621-1643.
[3]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[4]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng.Reservoir mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.[张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.]
[5]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J].Journal of China Coal Society,2012,37(3):438-444.[陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.]
[6]Zeng W T,Zhang J C,Ding W L,et al.Fracture development in Paleozoic shale of Chongqing area(South China).Part one:Fracture characteristics and comparative analysis of main controlling factors[J].Journal of Asian Earth Sciences,2013,75:251-266.
[7]Zheng Junwei,Sun Deqiang,Li Xiaoyan,et al.Advances in exploration and exploitation technologies of shale gas[J].Natural Gas Geoscience,2011,22(3):511-517.[郑军卫,孙德强,李小燕,等.页岩气勘探开发技术进展[J].天然气地球科学,2011,22(3):511-517.]
[8]Wu Jingshu,Yu Bingsong,Zhang Jinchuan,et al.Pore characteristics and controlling factors in the organic-rich shale of the Lower Silurian Longmaxi Formation revealed by samples from a well in southeastern Chongqing[J].Earth Science Frontier,2013,20(3):260-269.[武景淑,于炳松,张金川,等.渝东南渝页1井下志留统龙马溪组页岩孔隙特征及其主控因素[J].地学前缘,2013,20(3):260-269.]
[9]Chen Ping,Zhang Minqing,Xu Yongzhe,et al.The shale reservoir characteristics of Dalong Formation  Upper Permian in Chaohu-Jingxian,Lower Yangtze area[J].Acta Petrologica Sinica,2013,29(8):2925-2935.[陈平,张敏强,许永哲,等.下扬子巢湖—泾县地区上二叠统大隆组泥页岩储层特征[J].岩石学报,2013,29(8):2925-2935.]
[10]Zhou Dongsheng,Xu Linfeng,Pan Jiping,et al.Exploration prospective of Upper Permian Longtan Formation shale gas on the Yangtze Platform[J].Natural Gas Industry,2012,32(12):6-10.[周东升,许林峰,潘继平,等.扬子地块上二叠统龙潭组页岩气勘探前景[J].天然气工业,2012,32(12):6-10.]
[11]Cai Zhourong,Xia Bin,Wan Zhifeng.The characteristics of later tectonic activities and their influence on the preservation of the Paleozoic shale gas in Wuhu area,Lower Yangtze Platform[J].Journal of China Coal Society,2013,38(5):890-895.[蔡周荣,夏斌,万志峰,等.下扬子芜湖地区后期构造活动特征及其对古生界页岩气保存的影响[J].煤炭学报,2013,38(5):890-895.]
[12]Rietveld H M.Line profiles of neutron powder diffraction peaks for structure refinement[J].Acta Crystallographica,1967,22(1):151-152.
[13]Xoaotb B B.Coal and Gas Outburst[M].Song Shizhao,Wang Youan,translation.Beijing:China Industry Press,1966.[霍多特 B B.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1966.]
[14][KG*6/7]Brunauer S,Emmet P H,Teller E.Adsorption of gases in multimolecular layers[J].Journal of the American Chemical Society,1938,60:309-319.
[15]Barrett E P,Johner L S,Halenda P P.The determination of pore volume and area distributions in porous substances.I.Computations from nitrogen isotherms[J].Journal of the American Chemical Society,1951,73(1):373-380.
[16]Washburn E W.Note on the method of determining the distribution of pore sizes in a porous material[J].Proceedings of the National Academy of Sciences,1921,7(4):115-116.
[17]Yang Feng,Ning Zhengfu,Zhang Shidong,et al.Characterization of pore structures in shakes through nitrogen adsorption experiment[J].Natural Gas Industry,2013,33(4):135-140.[杨峰,宁正福,张世栋,等.基于氮气吸附实验的页岩孔隙结构表征[J].天然气工业,2013,33(4):135-140.]
[18]Wei Xiangfeng,Liu Ruobing,Zhang Tingshan,et al.Micro-pores structure characteristics and development control factors of shale gas reservoir:A case of Longmaxi Formation in XX area of Southern Sichuan and North Guizhou[J].Natural Gas Geoscience,2013,24(5):1048-1059.[魏祥峰,刘若冰,张廷山,等.页岩气储层微观孔隙结构特征及发育控制因素——以川南—黔北XX地区龙马溪组页岩为例[J].天然气地球科学,2013,24(5):1048-1059.]
[19]Han Xiangxin,Jiang Xiumin,Wang Dezhong,et al.Effect of combustion process on pore structure of oil shale ash[J].Journal of Chemical Industry and Engineering,2007,58(5):1296-1300.[韩向新,姜秀民,王德忠,等.燃烧过程对页岩灰孔隙结构的影响[J].化工学报,2007,58(5):1296-1300.]
[20]Wang Jinlin,Liu Guijian,Wang Weizhong,et al.Characteristics of pore-fissure and permeability of shales in the Longmaxi Formation in southeastern Sichuan Basin[J].Journal of China Coal Society,2013,38(5):772-777.[汪吉林,刘桂建,王维忠,等.川东南龙马溪组页岩孔裂隙及渗透性特征[J].煤炭学报,2013,38(5):772-777.]
[21]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.[杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.]
[22]The practices Series Editorial Board of Shale Gas geology and Exploration and Development.New Progress of North American Shale Gas Exploration and Development[M].Beijing:Petroleum Industry Press,2009:267-269.[页岩气地质与勘探开发实践丛书编委会.北美地区页岩气勘探开发新进展[M].北京:石油工业出版社,2009:267-269.]
[23]Li Xinjing,Hu Suyun,Cheng Keming.Suggestions from the development of fractured shale gas in North America[J].Petroleum Exploration and Development,2007,34(4):392-400.[李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发,2007,34(4):392-400.]
[24]Chalmers G R L,Bustin R M.The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia,Canada[J].International Journal of Coal Geology,2007,70:223-239.
[25]Ambrose R J,Hartman R C,Diaz-Campos M,et al.New Pore-scale Considerations for Shale Gas in Place Calculations[R].SPE Unconventional Gas Conference,23-25 February,Pittsburgh,Pennsylvania,USA .SPE 131772.2010:1-17.
[26]Lu X C,Li F C,Watson A T.Adsorption measurements in Devonian shales[J].Fuel,1995,74(4):599-603.
[27]Behar F,Vandenbroucke M.Chemical modeling of kerogens[J].Organic Geochemical,1987,11(1):15-24.
[28]Chen C,Hu D,Westacott D,et al.Nanometer-scale characterization of microscopic pores in shale kerogen by image analysis and pore-scale modeling[J].Geochemistry,Geophysics,Geosystems,2013,14(10):4066-4075.
[29]Xiao Zhenghui,Wang Chaohui,Yang Rongfeng,et al.Reservoir conditions of shale gas in the Lower Cambrian Niutitang Formation,northwestern Hunan[J].Acta Geologica Sinica,2013,87(10):1612-1623.[肖正辉,王朝晖,杨荣丰,等.湘西北下寒武统页岩气储集条件研究[J].地质学报,2013,87(10):1612-1623.]

[1] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[2] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[4] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[5] 王清辉,冯进. 烃源岩TOC测井评价方法及应用——以珠江口盆地文昌组为例[J]. 天然气地球科学, 2018, 29(2): 251-258.
[6] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[7] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[8] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[9] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[10] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[11] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[12] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[13] 赵军,范家宝,代新雲,何胜林,张海荣. 复杂非均质储层渗透率模型的分类评价方法[J]. 天然气地球科学, 2017, 28(2): 183-188.
[14] 康毅力,陈益滨,李相臣,游利军,陈明君. 页岩粒径对甲烷吸附性能影响[J]. 天然气地球科学, 2017, 28(2): 272-279.
[15] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!