天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例

孟强,王晓锋,王香增,张丽霞,姜呈馥,李孝甫,史宝光   

  1. 1.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃 兰州 730000;2.中国科学院大学,北京 100049;
    3.陕西延长石油(集团)有限责任公司,陕西省页岩气勘探开发工程技术研究中心,陕西 西安 710075
  • 收稿日期:2014-04-08 修回日期:2014-05-23 出版日期:2015-02-10 发布日期:2015-02-10
  • 通讯作者: 王晓锋(1979-),男,陕西岐山人,副研究员,博士,主要从事天然气地球化学研究. E-mail:wangxf@lzb.ac.cn.
  • 作者简介:孟强(1989-),男,甘肃武都人,博士研究生,主要从事页岩气地球化学、同位素气体地球化学研究.E-mail:371424086@qq.com.
  • 基金资助:
    国家自然科学基金项目(编号:41372156);国家科技重大专项(编号:2011ZX05008-004)联合资助.
     
     

Variation of Carbon Isotopic Composition of Alkanes During the Shale Gas Desorption Process and Its Geological Significance: A Case Study of Chang7 Shale ofYanchang Formation in Yishan Slope Southeast of Ordos Basin

MENG Qiang,WANG Xiao-feng,WANG Xiang-zeng,ZHANG Li-xia,JIANG Cheng-fu,LI Xiao-fu,SHI Bao-guang   

  1. 1.Key Laboratory of Petroleum Resources,Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics,Chinese Academy of Sciences,Lanzhou 730000,China; 2.University of Chinese Academy of Sciences,Beijing 100049,China; 3.Shaanxi Yanchang Petroleum (Group) Co.,Ltd.,Xi′an 710075,China
  • Received:2014-04-08 Revised:2014-05-23 Online:2015-02-10 Published:2015-02-10

摘要:

以鄂尔多斯盆地伊陕斜坡东南部延长组长7页岩为例,通过30余块页岩样品的解析实验研究了页岩气解析过程中烷烃碳同位素组成的变化规律,同时探讨了可能导致这种现象的原因及其地质意义。研究发现,页岩气在解析过程中甲烷碳同位素值增大了9.2‰(从-50.1‰~-40.9‰),乙烷碳同位素值增大了2.8‰(从-35.5‰~-32.7‰),丙烷碳同位素值几乎不发生变化。在常温或恒温加热条件下,页岩气解析过程中甲烷、乙烷碳同位素值持续增大,当升高温度时甲烷、乙烷碳同位素值先突然减小,然后慢慢变大。造成这种现象的原因可能主要是页岩气的吸附/解吸作用和同位素的扩散运移分馏作用。此外,页岩气的甲烷、乙烷碳同位素组成的这种变化特性,可能是页岩气甲烷碳同位素值相对于源岩热演化程度较小的重要原因,同时可以应用于压裂效果的评价和页岩气剩余资源量的评价中。
 

关键词: 页岩气, 解析, 碳同位素组成, 长7页岩, 地质意义

Abstract:

Taking the Yishan slope southeast Chang7 shale of Yanchang Formation in the Ordos Basin as an example,with  desorption experiments of more than 30 shale samples,this paper studied the variation of carbon isotopic composition of alkanes during the shale gas desorption process,also discussed the possible causes of this phenomenon and its geological significance.The study found that carbon isotopic composition become higher by 9.2‰ ( from -50.1‰ to -40.9‰) for methane of desorbed gas (δ13C1),become higher by 2.8‰ ( from -35.5‰ to -32.7‰) for ethane (δ13C2 ),and nearly no change for propane during the desorption process.At room temperature or constant temperature,carbon isotopic composition of methane and ethane (δ13C1 & δ13C2) continuously increases.When the temperature rises,δ13C1 & & δ13C2 values suddenly become low first and then slowly become high during the desorption process of shale gas.The reason for this phenomenon is probably due to the main adsorption/desorption of shale gas and diffusion migration fractionation of isotope.In addition,these variation characteristics of methane and ethane carbon isotope composition of shale gas may be the important reason for the low carbon isotopic composition of methane relative to the thermal evolution degree of source rock,and it can be applied to evaluate the amount of remaining resources of shale gas and the fracturing effect.
 

Key words: Shale gas, Carbon isotopic composition, Desorption, Chang 7 shale of Yanchang Formation, Geological significance

中图分类号: 

  • TE122.1+13

[1]Dai Jinxing.Significance of alkane carbon isotope studies in natural gas[J].Natural Gas Industry,2011,31(12):1-6.[戴金星.天然气中烷烃气碳同位素研究的意义[J].天然气工业,2011,31(12):1-6.]
[2]Dai Jinxing.Identification of C and H isotopic characteristics and various of natural gas[J].Natural Gas Geoscience,1993,4(2/3):1-40.[戴金星.天然气碳氢同位素特征和各类天然气的鉴别[J].天然气地球科学,1993,4(2/3):1-40.]
[3]Xu Yongchang.Genetic Theory of Natural Gases and Its Application[M].Beijing:Science Press,1994:1-413.[徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994:1-413.]
[4]Dai Jinxing.A study of the composition of C and H isotopes and their significance in the migration of oil and gas[J].Acta Petrolei Sinica,1988,9(4):27-32.[戴金星.碳氢同位素组成研究在油气运移上的意义[J].石油学报,1988,9(4):27-32.]
[5]Schoell M.The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J].Geochimica et Cosmochimica Acta,1980,44(5):649-661.
[6]Stahl W J,Carey Jr B D.Source-rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware Basins,west Texas[J].Chemical Geology,1975,16(4):257-267.
[7]Liu Wenhui,Xu Yongchang.A two model of carbon isotopic fractionation in coal-gas[J].Geochimica,1999,28(4):359-366.[刘文汇,徐永昌.煤型气碳同位素演化二阶段分馏模式及机理[J].地球化学,1999,28(4):359-366.]
[8]Sun Zandong,Jia Chengzao,Li Xiangfang,et al.Unconventional Oil & Gas Exploration and Development[M].Beijing:Petroleum Industry Press,2011.[孙赞东,贾承造,李相方,等.非常规油气勘探与开发[M].北京:石油工业出版社,2011.]
[9]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[10]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.[张金川,金之钧,袁明生.页岩气成藏机理与分布[J].天然气工业,2004,24(7):15-18.]
[11]Xiao Xianming,Song Zhiguang,Zhu Yanming,et al.Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area[J].Journal of China Coal Society,2013,38(5):721-727.[肖贤明,宋之光,朱炎铭,等.北美页岩气研究对我国下古生界页岩气开发的启示[J].煤炭学报,2013,38(5):721-727.]
[12]Gao Gang,Liu Guangdi,Wang Xulong,et al.Characteristics of separated shale gas from the Upper Triassic of Junggar Basin[J].Natural Gas Geoscience,2013,24(6):1284-1289.[高岗,柳广弟,王绪龙,等.准噶尔盆地上三叠统泥页岩解析气特征[J].天然气地球科学,2013,24(6):1284-1289.]
[13]Xu Shilin,Bao Shujing.Preliminary analysis of shale gas resource potential and favorable areas in Ordos Basin[J].Natural Gas Geoscience,2009,20(3):460-465.[徐士林,包书景.鄂尔多斯盆地三叠系延长组页岩气形成条件及有利发育区预测[J].天然气地球科学,2009,20(3):460-465.]
[14]Zhou Wen,Su Yuan,Wang Fubin,et al.Shale gas polling conditions and exploration targets in the Mesozoic of Fuxian block,Ordos Basin[J].Natural Gas Industry,2011,31 (2):29-33.[周文,苏瑗,王付斌,等.鄂尔多斯盆地富县区块中生界页岩气成藏条件与勘探方向[J].天然气工业,2011,31(2):29-33.]
[15]Liu Huaqing,Yuan Jianying,Li Xiangbo,et al.Lake basin evolution of Ordos Basin during Middle-Late Triassic and its origin analysis[J].Lithlogic Reservoirs,2007,19(1):52-56.[刘化清,袁剑英,李相博,等.鄂尔多斯盆地延长期湖盆演化及其成因分析[J].岩性油气藏,2007,19(1):52-56.]
[16]Luo Peng,Ji Liming.Reservoir characteristics and potential evaluation of continental shale gas[J].Natural Gas Geoscience,2013,24(5):1060-1068.[罗鹏,吉利明.陆相页岩气储层特征与潜力评价[J].天然气地球科学,2013,24(5):1060-1068.]
[17]Zhang T,Krooss B M.Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure[J].Geochimica et Cosmochimica Acta,2001,65(16):2723-2742.
[18]Lin Huixi,Cheng Fuqi,Jin Qiang.Fractionation mechanism of natural gas components and isotopic compositions and sample analysis[J].Natural Gas Geoscience,2011,22(2):195-200.[林会喜,程付启,金强.天然气组分、同位素分馏机理及实例分析[J].天然气地球科学,2011,22(2):195-200.]
[19]Li Jian,Liu Zhaolu,Li Zhisheng,et al.Experiment investigation on the carbon isotope and composition fractionation of methane during gas migration by diffusion[J].Natural Gas Geoscience,2003,14(6):463-468.[李剑,刘朝露,李志生,等.天然气组分及其碳同位素扩散分馏作用模拟实验研究[J].天然气地球科学,2003,14(6):463-468.]
[20]Schloemer S,Krooss B M.Molecular transport of methane,ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations[J].Geofluids,2004,4(1):81-108.
[21]Xia X,Tang Y.Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J].Geochimica et Cosmochimica Acta,2012,77:489-503.
[22]Zeng Weite,Zhang Jinchuan,Ding Wenlong,et al.The gas content of continental Yanchang shale and its main controlling factors:A case study of Liuping-177 well in Ordos Basin[J].Natural Gas Geoscience,2014,25(2):291-301.[曾维特,张金川,丁文龙,等.延长组陆相页岩含气量及其主控因素|以鄂尔多斯盆地柳坪171井为例[J].天然气地球科学,2014,25(2):291-301.]
[23]Su Xianbo,Chen Run,Lin Xiaoying,et al.The adsorption characteristic curves of 13CH4 and 12CH4 on coal and its application[J].Journal of China Coal Society,2007,32(5):539-544.[苏现波,陈润,林晓英,等.煤吸附 13CH412CH4的特性曲线及其应用[J].煤炭学报,2007,32(5):539-544.]
[24]Su Xianbo,Chen Run,Lin Xiaoying,et al.The primary study on coalbed gas fractionation mechanisms[J].Journal of Henan Polytechnic University,2006,25(4):295-300.[苏现波,陈润,林晓英,等.煤层气运移分馏机理初探[J].河南理工大学学报,2006,25(4):295-300.]
[25]Qin S,Tang X,Song Y,et al.Distribution and fractionation mechanism of stable carbon isotope of coalbed methane[J].Science in China:Series D,2006,49(12):1252-1258.

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[4] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[5] 倪斌,汤良杰,李萌,宋智华. 塔里木盆地鸟山东断裂带构造特征、形成机制及油气地质意义[J]. 天然气地球科学, 2018, 29(6): 834-844.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[9] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[10] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[11] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[12] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[13] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[14] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
[15] 梁榜,李继庆,郑爱维,卢文涛,张谦. 涪陵页岩气田水平井开发效果评价[J]. 天然气地球科学, 2018, 29(2): 289-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!