天然气地球科学

• 天然气地质学 • 上一篇    下一篇

塔中北斜坡中下奥陶统鹰山组岩溶储层成像测井相精细研究

耿晓洁,林畅松,韩剑发,尹宏,李浩,杨兆栓,王清龙   

  1. 1.中国地质大学(北京)能源学院,北京 100083;2.中国地质大学(北京)海洋学院,北京 100083;
    3.中国石油塔里木油田分公司,新疆 库尔勒 841000
  • 收稿日期:2014-04-23 修回日期:2014-07-29 出版日期:2015-02-10 发布日期:2015-02-10
  • 作者简介:耿晓洁(1985-),女,河北张家口人,博士研究生,主要从事碳酸盐岩沉积储层研究. E-mail:gengxj18@163.com.
  • 基金资助:

    国家重点基础研究发展计划“973”项目“中国西部叠合盆地深部有效碳酸盐岩储层形成机制与分布预测”(编号:2011CB201100-03);国家自然科学基金重点项目“塔里木盆地古生代古构造、古地理演变与成藏效应”(编号:41130422)联合资助.

FMI Facies Research in the Karst Reservoir of the Middle-Lower Ordovician Yingshan Formation in the Northern Slope of Tazhong Area

GENG Xiao-jie,LIN Chang-song,HAN Jian-fa,YIN Hong,LI Hao,YANG Zhao-shuan,WANG Qing-long   

  1.  
    (1.School of Energy Resources,China University of Geosciences,Beijing 100083,China;
    2.School of Ocean Sciences,China University of Geosciences,Beijing 100083,China;
    3.Tarim Oilfield Company,PetroChina,Korla 841000,China)
     
  • Received:2014-04-23 Revised:2014-07-29 Online:2015-02-10 Published:2015-02-10

摘要:

电阻率成像测井图像具有分辨率高、直观和可定量化的优势,在沉积储层研究上得到了广泛应用。研究以成像测井资料为主,结合大量的岩心、薄片和常规测井曲线的分析,将研究区鹰山组岩溶体系划分为11种成像测井相,包括溶蚀作用形成的溶洞相与构造作用形成的裂缝相构成的储层相类型、沉积作用形成的高阻隔层相类型,以及多种储集空间叠合的复合相类型等。在精细刻画岩溶体系的成像测井特征之后,认为塔中北斜坡鹰山组古岩溶体系中,形成有效储集层段的并非伽马高值的溶洞相,而是溶洞相之下、高阻隔层相之上的裂缝与溶孔的复合相,溶孔构成了油气的储集空间,而裂缝成为沟通储集空间的通道。多井分析结果表明,研究区受不整合面发育和构造古地貌等多重因素控制,古岩溶作用发育的鹰一段和鹰二段,显示出不同的岩溶特征。其中,鹰一段发育2套可识别的大型溶洞体系,而鹰二段则以小型溶洞、溶孔等均匀溶蚀作用为主。

关键词: 成像测井相, 塔中北斜坡, 鹰山组, 岩溶储层

Abstract:

FMI (Formation Micro-Scanner Image) is widely used to analyze reservoir properties with the advantages of high resolution,visible and quantified.In this study,11 FMI facies are classified based on the combination of borehole images,cores,thin sections and open-hole logs.It includes reservoir types like carves and tectonic fractures,sedimentary interlayer types like high resistivity facies and two compound facies of fractures and holes.Besides description of karst systems in borehole images,anomalies in GR curve attracting the researchers are analyzed by FMI images.It shows that compound facies of fractures and holes could be effective reservoir instead of caves with high GR value because oil/gas-bearing holes are connected by fractures.Two suites of karst system were formed in the OY1 while small scale caves and holes were formed in the OY2 because of lithological and structure locations.The results of this study demonstrated that,uncomformity and tectonic geomorphology control the differences of the paleokarst system.

Key words: FMI facies, Northern slope of Tazhong area, Yingshan Formation, Karst related reservoir

中图分类号: 

  • TE122.2+3
[1]Shi Shuyuan,Hu Suyun,Liu Wei,et al.Ordovician paleokarst system and it′s controlling  factor in Xekar,Tarim Basin[J].Natural Gas Geoscience,2014,25(2):167-177.[石书缘,胡素云,刘伟,等.塔里木盆地西克尔地区奥陶系溶洞系统特征及控制因素[J].天然气地球科学,2014,25(2):167-177.]
[2]Li Pengchun,Chen Guanghao,Meng Qingren et al.Geochemistry of Ordovician natual gased and its origing and distribution in Central Tarim Basin,China[J].Natual Gas Geoscience,2010,21(2):322-330.[李鹏春,陈广浩,孟庆任,等.塔中地区奥陶系天然气地球化学及成因与分布[J].天然气地球科学,2010,21(2):322-330.]
[3]Donselaar  M E,Schmidt J M.Integration of outcrop and borehole image logs for high-resolution facies interpretation:Example from a fluvial fan in the Ebro Basin,Spain[J].Sedimentology,2005,52(5):1021-1042.
[4]Xu C,Thomas P  C,Thalbert E M,et al.Middle Atokan sediment gravity flows in the Red Oak Field,Arkoma Basin,Oklahoma:A sedimentary analysis using electrical borehole images and wireline logs[J].AAPG Bulletin,2009,93(1):1-29.
[5]Rajabi M,Sherkati S,Bohloli B,et al.Subsurface fracture analysis and determination of in-situ stress direction using FMI logs:An example from the Santonian carbonates(Ilam Formation)in the Abadan Plain,Iran[J].Tectonophysics,2010,492(1-4):192-200.
[6]Chitale  V D,Johnson C,Entzminger D,et al.Application of a modern electrical borehole imager and a new image interpretation technique to evaluate the porosity and permeability in carbonate reservoirs[M]//Dipmeter and Borehole Image Log Technology.AAPG Memoir 92.Tulsa:AAPG,2010:295-307.
[7]Russell S D,Arkbar M,Vissapragada B,et al.Rock types and permeability prediction from dipmeter and image logs:Shuaiba reservoir(Aptian),Abu Dhabi[J].AAPG Bulletin,2002,86(10):1709-1732.
[8]Akbar M,Vissapragada B,Alghamdi A H,et al.A snapshot of carbonate reservoir evaluation[J].Oilfield Review,2000,12(4):20-41.
[9]Akbar M,Petricola M,Watfa M,et al.Classic interpretation problems:Evaluating carbonates[J].Oilfield Review,199,7(1):38-57.
[10]Ahr W,Allen D,Bachman H M,et al.Confronting the carbonate conundrum[J].Oilfield Review,2005,17(1):18-29.
[11]Wilson M E J,Lewis D,Yogi O,et al.Development of a Papua New Guinean onshore carbonate reservoir:A comparative borehole image FMI and petrographic evaluation[J].Marine and Petroleum Geology,2013,44(2013):164-195.
[12]Sun Chonghao,Yu Hongfeng,Wang Huaisheng,et al.Vugular formation of Carbonates in Ordovician Yingshan reservoir in Tazhong northern slope of Tarim Basin[J].Natural Gas Geoscience,2014,23(2):230-236.[孙崇浩,于红枫,王怀盛,等.塔里木盆地塔中地区奥陶系鹰山组碳酸盐岩孔洞发育规律研究[J].天然气地球科学,2014,23(2):230-236.]
[13]Wu Guanghui,Guo Qunying,Zhu Haiyan,et al.Characteristics of Ordovician fracture-vuggy carbonate reservoir in Mazatage structure belt,Tarim Basin[J].Natural Gas Geoscience,2012,23(3):443-449.[邬光辉,郭群英,朱海燕,等.塔里木盆地玛扎塔格构造带奥陶系岩溶缝洞体发育特征[J].天然气地球科学,2012,23(3):443-449.]
[14]Zhang Lijuan,Li Yong,Zhou Chenggang,et al.Lithofacies paleogeographical characteristics and reef-shoal distribution during the Ordovician in the Tarim Basin[J].Oil and Gas Geology,2007,28(6):731-737.[张丽娟,李勇,周成刚,等.塔里木盆地奥陶纪岩相古地理特征及礁滩分布[J].石油与天然气地质,2007,28(6):731-737.]
[15]Zhao Zongju,Jia Chengzao,Zhou Xinyuan,et al.Kay factors of oil-gas reservoir-forming and exploration targets in Ordovician in Tazhong area,Tarim Basin[J].China Petroleum Exploration,2006,(4):6-15.[赵宗举,贾承造,周新源,等.塔里木盆地塔中地区奥陶系油气成藏主控因素及勘探选区[J].中国石油勘探,2006,(4):6-15.]
[16]Yuan Shengqiang,Jia Chengzao,Gao Risheng,et al.Sedimentation characteristics and reservoir geological model of Mid-Lower Ordovician carbonate rock in Tazhong northern slope[J].Acta Petrolei Sinica,2012,33(supplement 1):80-88.[袁圣强,贾承造,高日胜,等.塔中北斜坡中—下奥陶统碳酸盐岩沉积储层特征及地质模式[J].石油学报,2012,33(增刊1):80-88.]
[17]Cai Xiyao,Qain Yixiong,Chen Yue,et al.Division and correlation of Middle-Lower Ordovician in Tazhong area,Tarim Basin[J].Xinjiang Petroleum Geology,2007,28(3):292-295.[蔡习尧,钱一雄,陈跃,等.塔中地区中下奥陶统划分与对比[J].新疆石油地质,2007,28(3):292-295.]
[18]Sun Chonghao,Yang Haijun,Pan Wenqing,et al.Fine division of Yingshan Formation of Ordovician in Tazhong area,Tarim Basin[J].Xinjiang Petroleum Geology,2012,33(1):46-48.[孙崇浩,杨海军,潘文庆,等.塔中地区奥陶系鹰山组精细划分[J].新疆石油地质,2012,33(1):46-48.]
[19]He Changpo,Wang Zhenyu,Zhang Yunfeng,et al.Study on sedimentary facies types and distribution of the Middle-Lower Ordovician in the north ramp of Tazhong area[J].Xinjiang Oil and Gas,2009,5(2):11-17.[何长坡,王振宇,张云峰,等.塔中北斜坡中下奥陶统鹰山组沉积相类型及分布研究[J].新疆石油天然气,2009,5(2):11-17.]
[20]Zhu Guangyou,Zhang Shuichang,Wang Huanhuan,et al.The formation and distribution of deep weathering crust in north Tarim Basin[J].Acta Petrologica Sinica,2009,25(10):2384-2398.[朱光有,张水昌,王欢欢,等.塔里木盆地北部深层风化壳储层的形成与分布[J].岩石学报,2009,25(10):2384-2398.]
[21]Han Jianfa,Yu Hongfeng,Zhang Haizu,et al.Characteristics of hydrocarbon enrichment in the Lower Ordovician carbonate rock weathering crust on the northern slope zone of Tazhong area[J].Oil and Gas Geology,2008,29(2):167-173.[韩剑发,王红枫,张海祖,等.塔中地区北部斜坡带下奥陶统碳酸盐岩风化壳油气富集特征[J].石油与天然气地质,2008,29(2):167-173.]
[22]Miao Jijun,Jia Chengzao,Zou Caineng,et al.Characteristics and exploration fields of paleokarst reservoirs at the top of early Ordovician in cetral Tarim Uplift[J].Natural Gas Geoscience,2007,18(4):497-500.[苗继军,贾承造,邹才能,等.塔中地区下奥陶统岩溶风化壳储层特征与勘探领域[J].天然气地球科学,2007,18(4):497-500.]
[23]Lofts J,Morris S.High-resolution electrical borehole images while drilling[M]//Dipmeter and Borehole Image Log Technology.AAPG Memoir 92.Tulsa:AAPG,2010:229-252.
[24]Loucks R G,Mescher P K,McMechan G A.Three-dimensional architecture of a coalesced,collapsed-paleocave system in the Lower Ordovician Ellenburger Group,central Texas[J].AAPG Bulletin,2004,88(5):545-564.
 
[1] 张林,万玉金,杨洪志,苏云河,张满郎. 四川盆地高石梯构造灯影组四段溶蚀孔洞型储层类型及组合模式[J]. 天然气地球科学, 2017, 28(8): 1191-1198.
[2] 王建民,王佳媛. 古岩溶地貌与古岩溶储层岩溶效应分析——以鄂尔多斯盆地东部奥陶系风化壳为例[J]. 天然气地球科学, 2016, 27(8): 1388-1398.
[3] 韩长城,林承焰,任丽华,鲁新便,魏婷,张宪国. 塔里木盆地塔河10区奥陶系断裂特征及对岩溶储层的控制作用[J]. 天然气地球科学, 2016, 27(5): 790-798.
[4] 龚洪林,张虎权,王宏斌,余建平,姚清洲,李闯,胡再元,李慧珍. 基于正演模拟的奥陶系潜山岩溶储层地震响应特征——以塔里木盆地轮古地区为例[J]. 天然气地球科学, 2015, 26(S1): 148-153.
[5] 欧阳永林,曾庆才,郭晓龙,代春萌,潘春孚,李璇,包世海,李新豫. 塔中地区鹰山组储层分布规律与地震预测[J]. 天然气地球科学, 2015, 26(5): 893-903.
[6] 任凭,林畅松,韩剑发,李浩,刘景彦,王清龙. 塔中北斜坡鹰山组碳酸盐岩沉积微相特征与演化[J]. 天然气地球科学, 2015, 26(2): 241-251.
[7] 石书缘,胡素云,刘伟,徐兆辉,李伯华,武娜. 综合运用碳氧同位素和包裹体信息判别古岩溶形成期次[J]. 天然气地球科学, 2015, 26(2): 208-217.
[8] 杨兆栓,林畅松,尹宏,李浩,王清龙,薛学亚,高达. 主成分分析在塔中地区奥陶系鹰山组碳酸盐岩岩性识别中的应用[J]. 天然气地球科学, 2015, 26(1): 54-59.
[9] 孙崇浩,于红枫,王怀盛,刘虎,张正红,韩杰,罗新生. 塔里木盆地塔中地区奥陶系鹰山组碳酸盐岩孔洞发育规律研究[J]. 天然气地球科学, 2012, 23(2): 230-236.
[10] 王福焕, 王招明, 韩剑发, 于红枫, 吉云刚, 赵宽志. 塔里木盆地塔中地区碳酸盐岩油气富集的地质条件[J]. 天然气地球科学, 2009, 20(5): 695-702.
[11] 王宏斌 张虎权 孙东 龚洪林 王振卿 李闯 黄林军. 风化壳岩溶储层地质—地震综合预测技术与应用——以塔中北部斜坡带下奥陶统为例[J]. 天然气地球科学, 2009, 20(1): 131-137.
[12] 王祥,;张敏;刘玉华, . 塔中北斜坡原油轻烃组成及地球化学特征[J]. 天然气地球科学, 2008, 19(05): 713-717.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!