天然气地球科学

• 天然气开发 • 上一篇    

基于Kozeny—Carman方程的渗透率分形模型

郑斌,李菊花   

  1. 1.长江大学油气资源与勘探技术教育部重点实验室,湖北 武汉 43010;2.长江大学石油工程学院,湖北 武汉 430100
  • 收稿日期:2014-05-20 修回日期:2014-07-17 出版日期:2015-01-10 发布日期:2015-01-10
  • 通讯作者: 李菊花(1975-),女,重庆人,副教授,博士,主要从事油气田开发工程研究.E-mail:lucyli7509@163.com.
  • 作者简介:郑斌(1990-),男,黑龙江绥化人,硕士研究生,主要从事油气田开发工程研究.E-mail:bin_zheng1990@163.com
  • 基金资助:

    国家自然科学基金资助项目(编号:51204193)|中国石油股份公司重大科技专项(编号:2012E-3304)联合资助.

A New Fractal Permeability Model for Porous Media Based on Kozeny-Carman Equation

ZHENG Bin,LI Ju-hua   

  1. 1.Key Laboratory of Exploration Technologies for Oil and Gas Resources,Yangtze University,Ministry  of Education,Wuhan 430100,China|2.Yangtze University,Petroleum Engineering,Wuhan 430100,China
  • Received:2014-05-20 Revised:2014-07-17 Online:2015-01-10 Published:2015-01-10

摘要:

Kozeny—Carman(KC)方程是渗流领域广泛应用于多孔介质渗透率预测的半经验公式,自该方程首次提出就不断地被修正并加以改进。应用分形理论,通过建立具有分形特征的毛管束模型,基于Posenille定律和达西公式分别确定了多孔介质的渗透率、孔隙度、比面的分形表达式,以经典的KC方程为基础,将三者的分形表达式相结合得出了全新的考虑比面影响的渗透率分形模型,同时得到了具有分形特征的KC常数。结果表明:多孔介质的渗透率是孔隙结构分形维数、迂曲度、宏观物性参数(孔隙度和比面)的函数,KC常数并不为固定值,而与毛细管的迂曲度、孔隙结构的分形维数等微观孔隙参数有着密切的联系。通过计算验证表明,相比于目前使用的KC方程,应用分形方法预测出的渗透率值与实际数值更加接近。

关键词: 分形, 渗透率, 孔隙度, 比面, Kozeny-Carman方程

Abstract:

Kozeny-Carman(KC)equation is a semi-empirical equation,which is widely used to predict permeability of porous media in the field of flow.Since the establishment of this equation,many new methods were adopted to increase its accuracy.In this paper,an analytical expression for the permeability in porous media using the fractal theory and capillary model was derived based on Posenille law and Darcy equation,which reflects the permeability,porosity,specific surface area relation.The new proposed model is expressed as a function of three properties of porous media considering the specific surface area from the classical KC equation.Meanwhile the fractalKC constant with no empirical constant is obtained.The result shows that permeability of porous media is the function of fractal dimension of pore structure,tortuosity,macroscopic petrophysical parameters(porosity and specific surface area).The KC constant is not constant and has close relationship with tortuosity,fractal dimension and microscopic pore structure parameters.It is concluded that the permeability calculated by using new fractal model is more accurate than that by other KC equations.


Key words: Fractal, Permeability, Porosity, Specific surface, Kozeny-Carman equation

中图分类号: 

  • TE311
[1]Yang Shenglai,Wei Junzhi.Petrophysics[M].Beijing:Petroleum Industry Press,2006:157-158.[杨胜来,魏俊之.油藏物理学[M].北京:石油大学出版社,2006:157-158.]
[2]Kozeny J.Ueber kapillare Leitung des Wassers im Boden[J].Sitzungsber Akad.Wiss,Wien,1927,136(2a):271-306.
[3]Carman P C.Permeability of saturated sands,soils and clays[J].The Journal of Agricultural Science,1939,29(2):263-273.
[4]Xu P,Yu B M.Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J].Advances in Water Resources,2008,34(1):74-81.
[5]Kaviany M.Principles of Heat Transfer in Porous Media[M].New York:Springer-Verlag,1995.
[6]Kyan C P,Wasan D T,Kintner R C.Flow of single-phase fluids through fibrous beds[J].Industrial & Engineering Chemistry Fundamentals,1970,9(4):596-603.
[7]Mathavan G N,Viraraghavan T.Coalescence/ filtration of an oil-in-water emulsion in a peat bed[J].Water Research,1992,26(1):91-98.
[8]Rahli O,Tadrist L,Misceyic M,et al.Fluid flow through randomly packed mono-disperse fibers:the Kozeny-Carman parameter analysis[J].Journal of Fluids Engineering,1997,119(1):188-192.
[9]Sparrow E M,Loeffler A L.Longitudinal laminar flow between cylinders arranged in regular array[J].AICHE Journal,1959,5(3):325-330.
[10]Davies L,Dollimore D.Theoretical and experimental values for the parameter k of the Kozeny-Carman equation as applied to sedimenting suspensions[J].Journal of Physics D,1980,13(11):2013-2020.
[11]Costa A.Permeability-porosity relationship:A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption[J].Geophysical Research Letters,2006,33:L02318.
[12]Zhu Hua,Ji Cuicui.Fractal Theory and Its Applications[M].Beijing:Science Press,2011.[朱华,姬翠翠.分形理论及其应用[M].北京:科学出版社,2011.]
[13]Pape H,Clauser C,Iffland J.Permeability prediction based on fractal pore-space geometry[J].Geophysics,1999,64(5):1447-1460.
[14]Pare H,Clauser C,Iffland J.Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model[J],Pure and Applied geophysics,2000,157(4):603-619.
[15]Xu P,Yu B M.Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J].Advances in Water Resources,2008,34(1):74-81.
[16]Xu Peng,Qiu Shuxia,Jiang Zhouting,et al.Fractal analysis of Kozeny-Carman constant in the homogenous porous media [J].Journal of Chongqing University,2011,34(4):78-82.[徐鹏,邱淑霞,姜舟婷,等.各向同性多孔介质中Kozeny-Carman常数的分型分析[J].重庆大学学报,2011,34(4):78-82.]
[17]Chen Huanqing,Cao Chen,Liang Shuxian,et al.Research advances on reservoir pores[J].Natural Gas Geoscience,2013,24(2):227-237.[陈欢庆,曹晨,粱淑贤,等.储层孔隙结构研究进展[J].天然气地球科学,2013,24(2):227-237.]
[18]Xu Shouyu,Wang Shuping.Fractal feature about the micro-structure in sandstone reservoir:Taking the Paleogene Shahejie Formation in Shengtuo Oilfield as an example[J].Natural Gas Geoscience,2013,24(5):886-892.[徐守余,王淑萍.砂岩储层微观结构分形特征研究——以胜坨油田古近系沙河街组储层为例[J].天然气地球科学,2013,24(5):886-892.]
[19]Xie Xiaoyong,Guo Xinjiang,Jiang Zujun,et al.Study on formation damage and fractal feature of pore structure[J].Natural Gas Geoscience,2011,22(6):1128-1132.[谢晓永,郭新江,蒋祖军,等.储层孔隙结构分形特征与损害研究[J].天然气地球科学,2011,22(6):1128-1132.]
[20]Chen Tianyong,Mao Xin,Liu Shiyin,et al.Fractal theory-based calculation method of relative permeability curves-a case study from the Hetaoyuan Formation in Shuanghe Oilfield,Nanxiang Basin[J].Oil & Gas Geology,2012,33(4):578-590.[陈田勇,毛鑫,刘仕银,等.利用分形理论计算相对渗透率曲线——以南襄盆地双河油田核桃园组六油组为例[J].石油与天然气地质,2012,33(4):578-590.]
[21 ]Yang Feng,Ning Zhengfu,Wang Qing,et al.Fractal characteristics of Nanopore in Shales[J].Natural Gas Geoscience,2014,25(4):618-623.[杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623.]
[22 ]Zhao Ming,Yu Boming.The fractal characterization of pore structure for some numerical rocks and prediction of permeabilities[J].Journal of Chongqing University,2011,34(4):87-94.[赵明,郁伯铭.数字岩心孔隙结构的分形表征及渗透率预测[J].重庆大学学报,2011,34(4):87-94.]
 
[1] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[2] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[4] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[5] 王清辉,冯进. 烃源岩TOC测井评价方法及应用——以珠江口盆地文昌组为例[J]. 天然气地球科学, 2018, 29(2): 251-258.
[6] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[7] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[8] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[9] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[10] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[11] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[12] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[13] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[14] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.
[15] 张合文,邹洪岚,刘双双,鄢雪梅,梁冲. 碳酸盐岩酸蚀蚓孔双重分形描述方法[J]. 天然气地球科学, 2017, 28(3): 466-472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!