天然气地球科学

• 非常规天然气 • 上一篇    下一篇

黔西比德—三塘盆地独立叠置含煤层气系统垂向分布与煤储层吸附—渗流特征

郭晨   

  1. 中国矿业大学煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221116
  • 收稿日期:2014-04-17 修回日期:2014-06-29 出版日期:2015-01-10 发布日期:2015-01-10
  • 作者简介:郭晨(1988-),男,山西晋城人,博士研究生,主要从事煤层气地质研究. E-mail:makaay_@126.com.
  • 基金资助:

    国家科技重大专项项目(编号:2011ZX05034);煤层气资源与成藏过程教育部重点实验室(中国矿业大学)开放基金资助项目(编号:2013-009);江苏省普通高校研究生科研创新计划项目(编号:CXZZ13_0943)联合资助.

Independent Superposed CBM-bearing Systems Vertical Distribution and Coal Reservoir Adsorption and Seepage Characteristics in Bide-Santang Basin,Western Guizhou

GUO Chen   

  1. Key Laboratory of CBM Resources and Reservoiring Process,China University of Miningand Technology,Xuzhou 221116,China
  • Received:2014-04-17 Revised:2014-06-29 Online:2015-01-10 Published:2015-01-10

摘要:

通过系统采集黔西比德—三塘盆地2口典型钻孔的煤与岩石样品,对岩样分别开展压汞、突破压力、扫描电镜和铸体薄片实验,对煤样开展压汞与液氮测试,以探索独立叠置含煤层气系统的分布规律和形成机制,以及多煤层与多含气系统叠置条件下煤储层的吸附与渗流特征,结果表明:层序地层格架控制了煤层围岩渗流能力的垂向变化,进而控制了含气系统的垂向分布,具体表现为最大海泛面位置发育区域稳定分布的海相泥岩,其中黄铁矿、菱铁矿、碳酸盐胶结作用强烈,岩性高度致密,孔隙极不发育且突破压力较高,可构成区域性的隔水阻气层|而层序界面附近岩层由于沉积间断时期的暴露、冲刷、淋滤造成次生孔隙发育,增强了岩层的渗透性能,使得相邻煤层存在含气性联系。基于此认识,以最大海泛面为界,将含煤地层划分为1~5号煤、 6~13号煤、14~21号煤、22~32号煤及33~35号煤共5套独立含气系统。2号煤和35号煤具备有利于煤层气渗流的孔裂隙系统,其他煤层的渗流条件较差,6号煤具有较强的煤层气吸附储集能力,2、16、23、35号煤次之,21、30、32号煤吸附储集能力较差。

关键词: 比德—三塘盆地, 独立叠置含煤层气系统, 形成机制, 煤储层, 孔隙结构, 渗流, 吸附

Abstract:

In order to explore the development rule and formation mechanism of independent superposed CBM-bearing systems and reveal the coal reservoirs adsorption and seepage characteristics under condition of multiple superposed coal seams and CBM-bearing systems,this article collects coal and rock samples from two representative boreholes located in Bide-SantangBasin,western Guizhou.For rock samples,experiments of mercury injection porosimetry,breakthrough pressure,scanning electron microscope and casting lamella are conducted respectively,while mercury injection porosimetry and low temperature nitrogen adsorption tests are conducted on coal samples.The following conclusions are obtained:sequence stratigraphic framework controls the CBM-bearing systems vertical distribution by controlling the variation of rock seepage capacity in vertical.Marine mudstone developed regionally in the maximum flooding surface(MFS) is highly compacted with the cementation of pyrite,siderite and carbonate minerals,as a result,the pores developed very weekly and the breakthrough pressure is high,which made the MFS stratum liable to form regional impermeable barrier.The stratum near the sequence boundary(SB) develops secondary pore on the influence of exposure,washing and leaching during the sedimentary hiatus,which enhanced the rock seepage capacity and promoted the fluid contact between adjacent coal seams.On this basis,the coal-bearing strata are divided into five CBM-bearing systems by MFS:No.1-5 coal seams,No.6-13 coal seams,No.14-21 coal seams,No.22-32 coal seams and No.33-35 coal seams.No.2 and 35 coal seams have favorable pore systems for CBM seepage,while other coal seams have relatively poor seepage condition.No.6 coal seam has better CBM adsorption and storage capacity,then the No.2,16,23 and 35 coal seams,and the No.21,30 and 32 coal seams have relatively poor adsorption and storage capacity.
 

Key words: Bide-Santang Basin, Independent superposed CBM-bearing systems, Formation mechanism, Coal reservoir, Pore structure, Seepage, Adsorption

中图分类号: 

  • TE132.2
[1]Ni Xiaoming,Su Xianbo,Li Guangsheng.Feasibility of multi-layer drainage for No.3 and No.15 coal seams in the Fanzhuang area[J].Natural Gas Geoscience,2010,21(1):144-149.[倪小明,苏现波,李广生.樊庄地区3#和15#煤层合层排采的可行性研究[J].天然气地球科学,2010,21(1):144-149.]
[2]Zhang Peihe,Liu Yuhui,Wang Zhengxi,et al.Geological factors of production control of CBM well in South Qinshui Basin[J].Natural Gas Geoscience,2011,22(5):909-914.[张培河,刘钰辉,王正喜,等.基于生产数据分析的沁水盆地南部煤层气井产能控制地质因素研究[J].天然气地球科学,2011,22(5):909-914.]
[3]Guo Chen,Qin Yong,Yi Tongsheng,et al.Groundwater dynamic conditions and orderly coalbed methane development of Feitian block in western Guizhou,south China[J].Journal of China Coal Society,2014,39(1):107-117.[郭晨,秦勇,易同生,等.黔西肥田区块地下水动力条件与煤层气有序开发[J].煤炭学报,2014,39(1):107-117.]
[4]Qin Yong,Xiong Menghui,Yi Tongsheng,et al.On unattached multiple superposed CBM-bearing system:In a case of Shuigonghe syncline,Zhina coalfield,Guizhou[J].Geological Review,2008,54(1):65-70.[秦勇,熊孟辉,易同生,等.论多层叠置独立含煤层气系统——以贵州织金—纳雍煤田水公河向斜为例[J].地质论评,2008,54(1):65-70.]
[5]Qin Yong,Tang Dazhen,Liu Dameng,et al.Geological evaluation theory and technology progress of coal reservoir dynamics during coalbed methane drainage[J].Coal Science and Technology,2014,42(1):80-88.[秦勇,汤达祯,刘大锰,等.煤储层开发动态地质评价理论与技术进展[J].煤炭科学技术,2014,42(1):80-88.]
[6]Shen Yulin,Qin Yong,Guo Yinghai,et al.Sedimentary controlling factor of Unattached multiple superimposed coalbed methane system formation[J].Earth Science:Journal of China University of Geosciences,2012,37(3):573-579.[沈玉林,秦勇,郭英海,等.“多层叠置独立含煤层气系统”形成的沉积控制因素[J].地球科学:中国地质大学学报,2012,37(3):573-579.]
[7]Qin Yong,Gao Di,Wu Caifang,et al.Coalbed Methane Resources Potential and Prediction Evaluation of Guizhou Province[M].Xuzhou:China University of Mining and Technology Press,2012:12-18.[秦勇,高弟,吴财芳,等.贵州省煤层气资源潜力及其预测评价[M].徐州:中国矿业大学出版社,2012:12-18.]
[8]Ye Jianping,Qin Yong,Lin Dayang.China Coalbed Methane Resources[M].Xuzhou:China University of Mining and Technology Press,1999:37-58.[叶建平,秦勇,林大扬.中国煤层气资源[M].徐州:中国矿业大学出版社,1999:37-58.]
[9]Yang Zhaobiao.Coalbed Methane Reservoiring Process under Condition of Multi-coalbeds Overlay[D].Xuzhou:China University of Mining and Technology,2011:20-35.[杨兆彪.多煤层叠置条件下的煤层气成藏作用[D].徐州:中国矿业大学,2011:20-35.]
[10]Huang Zhilong,Hao Shisheng.A method of estimating breakthrough pressure and displacement pressure of caprock[J].Xingjiang Petroleum Geology,1994,15(2):163-166.[黄志龙,郝石生.盖层突破压力及排替压力的求取方法[J].新疆石油地质,1994,15(2):163-166.]
[11]Deng Zuyou,Wang Shaochang,Jiang Zhenglong,et al.Breaking pressure of gas cap rocks[J].Oil & Gas Geology,2000,21(2):136-138.[邓祖佑,王少昌,姜正龙,等.天然气封盖层的突破压力[J].石油与天然气地质,2000,21(2):136-138.]
[12]Yao Yanbin,Liu Dameng,Tang Dazhen,et al.Preservation and deliverability characteristics of coalbed methane,north China[J].Petroleum Exploration and Development,2007,34(6):664-668.[姚艳斌,刘大锰,汤达祯,等.华北地区煤层气储集与产出性能[J].石油勘探与开发,2007,34(6):664-668.]
[13]XoдoT B B.Coal and Gas Outburst[M].Song Shizhao,Wang Youan,translated.Beijing:China Industry Press,1996:27-30.[XoдoT B B.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1996:27-30.]
[14]Yao Yanbin,Liu Dameng,Huang Wenhui,et al.Research on the pore-fractures system properties of coalbed methane reservoirs and recovery in Huainan and Huaibei coal-fields[J].Journal of China Coal Society,2006,31(2):163-168.[姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔—裂隙系统与煤层气产出性能研究[J].煤炭学报,2006,31(2):163-168.]
[15]Fu Xuehai,Xing Xue,Liu Aihua,et al.Analysis of porosity,adsorption characteristics and well test results of coal beds with different ranks in north China[J].Natural Gas Industry,2011,31(12):72-75.[傅雪海,邢雪,刘爱华,等.华北地区各类煤储层孔隙、吸附特征及试井成果分析[J].天然气工业,2011,31(12):72-75.]
[16]Fu Xuehai,Qin Yong,Wei Chongtao.Coalbed Methane Geology[M].Xuzhou:China University of Mining and Technology Press,2007:76-81.[傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007:76-81.]
[17]Zhao Aihong,Liao Yi,Tang Xiuyi.Quantitative analysis of pore structure by fracture analysis[J].Journal of China Coal Society,1998,23(4):439-442.[赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J].煤炭学报,1998,23(4):439-442.]
[18]Fu Xuehai,Qin Yong,Xue Xiuqian,et al.Research on fractals of pore and fracture- structure of coal reservoirs[J].Journal of China University of  Mining  & Technology,2001,30(3):225-228.[傅雪海,秦勇,薛秀谦,等.煤储层孔裂隙系统分形研究[J].中国矿业大学学报:自然科学版,2001,30(3):225-228.]
[19]Fu Xuehai,Qin Yong,Zhang Wanhong,et al.Fractal classification and natural classification of coal pore structure based on migration of coalbed methane[J].Chinese Science Bulletin,2005,50(supplement):66-71.[傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(增刊):51-55.]
[20]Chen Ping,Tang Xiuyi.The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal[J].Journal of China Coal Society,2001,26(5):552-556.[陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.]
 
[1] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[3] 倪斌,汤良杰,李萌,宋智华. 塔里木盆地鸟山东断裂带构造特征、形成机制及油气地质意义[J]. 天然气地球科学, 2018, 29(6): 834-844.
[4] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[5] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[6] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[7] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[8] 左罗,蒋廷学,罗莉涛,吴魏,赵昆. 基于渗流新模型分析页岩气流动影响因素及规律[J]. 天然气地球科学, 2018, 29(2): 296-304.
[9] 杨文新,李继庆,苟群芳. 四川盆地焦石坝地区页岩吸附特征室内实验[J]. 天然气地球科学, 2017, 28(9): 1350-1355.
[10] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[11] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[12] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[13] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[14] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[15] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!