天然气地球科学

• 非常规天然气 • 上一篇    下一篇

南海北部陆坡973-4柱沉积物中硫酸盐—甲烷转换带(SMTZ)研究及其对水合物的指示意义

张劼1,雷怀彦1,2,欧文佳3,杨玉峰1,龚楚君1,史春潇1   

  1. 1.厦门大学海洋与地球学院,福建 厦门 361005; 2.厦门大学近海海洋环境科学国家重点实验室,福建 厦门 361005; 3.中国地质大学资源学院,湖北 武汉 430074
  • 收稿日期:2013-11-04 修回日期:2014-07-25 出版日期:2014-11-10 发布日期:2014-11-10
  • 作者简介:张劼(1988-),男,陕西西安人,博士研究生,主要从事天然气水合物地质与地球化学研究. E-mail:chandler@stu.xmu.edu.cn.
  • 基金资助:
    国家自然科学基金(编号:40976035|41276046)|“973”计划“我国天然气水合物富集规律与开采基础研究”(编号:2009CB21951)联合资助.

Research of the Sulfate-Methane Transition Zone (SMTZ)in Sediments of 973-4 Column in Continental Slope of Northern South China Sea

ZHANG Jie1,LEI Huai-yan1,2,OU Wen-jia3,YANG Yu-feng1,GONG Chu-jun1,SHI Chun-xiao1   

  1. (1.College of Ocean and Earth Sciences,Xiamen University,Xiamen 361005,China; 2.State Key Laboratory of Marine Environment Science,Xiamen University,Xiamen 361005,China; 3.Faculty of Earth Resources,China University of Geosciences,Wuhan 430074,China)
  • Received:2013-11-04 Revised:2014-07-25 Online:2014-11-10 Published:2014-11-10

摘要: 天然气水合物分解释放的甲烷向上逸散与孔隙水中硫酸盐发生甲烷厌氧氧化—硫酸盐还原反应。深海沉积物有机质氧化也可驱动硫酸盐还原反应。针对甲烷渗漏背景下硫酸盐还原的不同驱动模式,对沉积物中总有机碳、总硫、酸可挥发性硫(AVS)、δ34Spyrite及孔隙水中的SO2-4等进行了测试,结果表明:①总硫在390cm、610~890cm处为0.3%~0.7%,此含量高于相邻层位|②AVS含量在表层较低,于610~868cm区间缓增至565μmol/g,898cm处AVS含量激增至9 315μmol/g|③δ34Spyrite值由浅至深逐渐增大,由-44.4‰升至17.9‰,后回落到12.6‰|④90~900cm区间的SO2-4含量逐渐下降,大于900cm则 SO2-4含量变化不大。研究结果显示:研究区存在分别由有机质氧化和甲烷厌氧氧化驱动的2种硫酸盐还原模式|硫酸盐甲烷转换带以总硫、δ34Spyrite等指标为判定因素可分为上,下2部分|研究区SMI深度约为900cm,这一较浅的SMI预示着研究区深部可能存在天然气藏或天然气水合物藏|结合微生物研究结果发现,研究区地球化学特征和微生物的分布存在耦合现象,这对进一步研究甲烷水合物潜在区的生物地球化学循环具有一定的意义。

关键词: 硫酸盐—甲烷转换带, 硫同位素, 酸可挥发性硫, 黄铁矿, 生物地球化学循环

Abstract: In terms of two different driving modes on the background of methane leakage,a series of studies on total sulfur (TS),acid volatile sulfide (AVS),δ34Spyrite and SO2-4  of seawater have been carried out.The results of above studies showed: (1)The content of TS from 390cm and 610-890cm are slightly higher than those from the adjacent layers,varying from 0.3% to 0.7%|(2)AVS slowly increased from 610cm and reached 565μmol/g at 868cm,finally soared to 9 315μmol/g at 898cm|(3)δ34Spyrite increased gradually from -40.9‰ to 17.9‰|(4)The content of SO2-4 gradually declined during 90-900cm,and stabilized where it was under 900cm.The study shows that: both organic oxidation and anaerobic oxidation of methane can drive sulfate reduction in the study area|sulfate-methane transition zone could be divided into two parts by several factors such as TS and δ34Spyrite.From the distribution of sulfur isotope,AVS and TS,the depth of sulfate-methane interface (SMI)in this area is just over 900cm.The shallow SMI is a strong signal of gas hydrate reservoir which may exist in the deeper layer of the study area.Combined with the research on microbiology,a coupling phenomenon exists between the regional geochemical conditions and microbial distribution.

Key words: Sulfate-methane transition zone, Sulfur isotope, Acid volatile sulfide, Pyrite, Biogeochemical cycles

中图分类号: 

  • TE132.2

[1]Froelich P N,Klinkhammer G P,Bender M L,et al.Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:suboxic diagenesis[J].Geochimica et Cosmochimica Acta,1979,43(7):1075-1090.
[2]Jrgensen B B.Mineralization of organic matter in the sea bed:The role of sulphate reduction[J].Nature,1982,296:643-645.
[3]Zhu Maoxu,Shi Xiaoning,Yang Guipeng,et al.Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments:An overview[J].Advances in Earth Science,2011,26(4):356-364.[朱茂旭,史晓宁,杨桂朋,等.海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J].地球科学进展,2011,26(4):355-364.]
[4]Wu Zijun,Ren Dezhang,Zhou Huaiyang.Anaerobic oxidation of methane (AOM)and its influence on inorganic sulfur cycle in marine sediments[J].Advances in Earth Science,2013,28(7):765-773.[吴自军,任德章,周怀阳.海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J].地球科学进展,2013,28(7):765-773.]
[5]Lei Huaiyan,Guan Baocong,Gong Chenglin,et al.Discrimination of methane hydrate dissolution and dissociation in sea water and its geological significance[J].Natural Gas Geoscience,2007,18(4):584-587.[雷怀彦,官宝聪,龚承林,等.海底甲烷水合物溶解和分解辨析及其地质意义[J].天然气地球科学,2007,18(4):584-587.]
[6]Canfield D E.Organic Matter Oxidation in Marine Sediments[M]//Interactions of C,N,P,and S Biogeochemical Cycles and Global Change.Berlin:Springer,1993:333-363.
[7]Milucka J,Ferdelman T G,Polerecky L,et al.Zero-valent sulphur is a key intermediate in marine methane oxidation[J].Nature,2012,491(7425):541-546.
[8]Pohlman J W,Riedel M,Bauer J E,et al.Anaerobic methane oxidation in low-organic content methane seep sediments[J].Geochimica et Cosmochimica Acta,2013,108:184-201.
[9]Hong W L,Torres M E,Kim J H,et al.Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin[J].Biogeochemistry,2013,115:129-148.
[10]Marcos Y Y,Thomas H,Tobias G,et al.Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane[J].Nature Science,2014,(7):190-195.
[11]Yang Tao,Jiang Shaoyong,Ge Lu,et al.Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin,northern South China Sea,and its implications for gas hydrate exploration[J].Science China:Earth Sciences,2013,56(4):521-529.[杨涛,蒋少涌,葛璐,等.南海北部琼东南盆地HQ-1PC沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J].中国科学:地球科学,2013,43(3):329-338.]
[12]Lu Hongfeng,Liu Jian,Chen Fang,et al.Shallow sulfate-methane interface in northeastern South China Sea:An indicator of strong methane seepage on seafloor[J].Marine Geology & Quaternary Geology,2012,32(1):93-98.[陆红锋,刘坚,陈芳,等.南海东北部硫酸盐还原—甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录[J].海洋地质与第四纪地质,2012,32(1):93-98.]
[13]Wu Lushan,Yang Shengxiong,Liang Jinqiang,et al.Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu area,the South China Sea[J].Science China:Earth Sciences,2013,56(4):530-540.[吴庐山,杨胜雄,梁金强,等.南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义[J].中国科学:地球科学,2013,43(3):339-350.]
[14]Liu Jian,Lu Hongfeng,Liao Zhiliang,et al.Distribution in sulfides in shallow sediments in Dongsha area,South China Sea,and its relationship to gas hydrates[J].Earth Science Frontiers,2005,12(3):258-262.[刘坚,陆红锋,廖志良,等.东沙海域浅层沉积物硫化物分布特征及其与天然气水合物的关系[J].地学前缘,2005,12(3):258-262.]
[15]Xie Lei,Wang Jiasheng,Wu Nengyou,et al.Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea:Implications for a possible mud volcano environment[J].Science China:Earth Sciences,2013,56(4):541-548.[谢蕾,王家生,吴能友,等.南海北部神狐海域浅表层沉积物中自生黄铁矿及其泥火山指示意义[J].中国科学:地球科学,2013,43(3):351-359.]
[16]Pu Xiaoqiang,Zhong Shaojun,Yu Wenqiang,et al.Authigenic sulfide minerals and their sulfur isotopes in sediments of the northern continental slope of the South China Sea and their implications for methane flux and gas hydrate formation[J].Chinese Science Bulletin,2006,51(24):2874-2880.[蒲晓强,钟少军,于雯泉,等.南海北部陆坡NH-1孔沉积物中自生硫化物及其硫同位素对深部甲烷和水合物存在的指示[J].科学通报,2006,51(24):2874-2880.]
[17]Guan Baocong,Lei Huaiyan,Guo Zhanrong,et al.The research survey of hydrate and resourceestimate on the blake ridge[J].Natural Gas Geoscience,2003,14(6):514-518.[官宝聪,雷怀彦,郭占荣,等.布莱克海台水合物气资源评价[J].天然气地球科学,2003,14(6):514-518.]
[18]Nedwell D B,Abram J W.Bacterial sulphate reduction in relation to sulphur geochemisrty in wto contrasting areas of saltmarsh sediment[J].Estuar Coast Mar Sci,1978,6(4):341-351.
[19]Canfield D E.Reactive iron in marine sediments[J].Geochimica et Cosmochimica Acta,1989,53(3):619-632.
[20]Taillefert M,Bono A B,Luthert G W.Reactivity of freshly formed Fe (Ⅲ)in synthetic solutions and (pore)waters:voltammetric evidence of an aging process[J].Environmental Science & Technology,2000,34(11):2169-2177.
[21]Luther G W,Kostka J E,Church T M.Seasonal iron cycling in the salt-marsh sedimentary environment:The importance of ligand complexes with Fe (Ⅱ)and Fe (Ⅲ)in the dissolution of Fe (Ⅲ)minerals and pyrite,respectively[J].Marine Chemistry,1992,40(1/2):81-103.
[22]Jrgensen B B,Bottcher M E,Luschen H.Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfidesin Black Sea sediments[J].Geochim Cosmochim Acta,2004,68(9):2095-2118.
[23]Rees C E,Jenkins W J,Monster J.The sulphur isotopic composition of oceanic water sulphated[J].Geochim Cosmochim Acta,1978,42:377-382.
[24]Philipp Bning,Hans-Jürgen Brumsack,Michael E Bttcher,et al.Geochemistry of Peruvian near-surface sediments[J].Geochimica et Cosmochimica Acta,2004,68(21):4429-4451.
[25]Zhang Wei,Liu Congqiang,Liang Xiaobing.Biological function in sulfur isotope fractionation and environmental effect[J].Earth and Environment,2007,35(3):223-227.[张伟,刘丛强,梁小兵.硫同位素分馏中的生物作用及其环境效应[J].地球与环境,2007,35(3):223-227.]
[26]Jrgensen B B.A theoretical model of the stable sulfur isotope distribution in marine sediments[J].Geochim Cosmochim Acta,1979,43(3):363-374.
[27]Neretin L N,Bottcher M E,Jrgensen B B.Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea[J].Geochim Cosmochim Acta,2004,68(9):2081-2093.
[28]Reeades C E.A stystate model for sulphur isotope fractionation in bacterial reduction processes[J].Geochimica et Cosmochimica  Acta,1973,37:1141-1162.
[29]Borowski W S,Paull C K,Ussler I W.Global and local variations of interstitial sulfate gradients in deep-water,continental margin sediments:Sensitivity to underlying methane and gas hydrates[J].Marine Geology,1999,159(1-4):131-154.
[30]Wang Weiqi,Wang Baoxia,Zhang Wenjuan,et al.Reviews on anaerobic methane oxidation and influencing factorin marine sediment[J].Marien Environmental Science,2011,30(5):747-751.[王维奇,王宝霞,张文娟,等.海洋沉积物甲烷厌氧氧化及其影响因子研究进展[J].海洋环境科学,2011,30(5):747-751.]
[31]Orphan V J,House C H,Hinrichs K U,et al.Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science,2001,293(5529):484-487.
[32]Liu Tao,Zheng Guodong,Pan Yongxin,et al.Influence of geo-microbes on the formation of marine gas hydrates[J].Natural Gas Geoscience,2009,20(6):992-999.[刘涛,郑国东,潘永信,等.地质微生物对海洋天然气水合物的影响[J].天然气地球科学,2009,20(6):992-999.]
[33]Shi Chunxiao,Lei Huaiyan,Zhao Jing,et al.Vertical microbial community structure characteristics of sediment in gas hydrate potential area of Northern South China Sea Jiulong methane reef[J].Acta Sedimentologica Sinica,2014,32(6):1072-1082.[史春潇,雷怀彦,赵晶,等.南海北部九龙甲烷礁邻区沉积物层中垂向细菌群落结构特征研究[J].沉积学报,2014,32(6):1072-1082.]

[1] 刘田, 冯明友, 王兴志, 陈波, 张良华, 刘小洪, 王珏博. 渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制[J]. 天然气地球科学, 2019, 30(5): 740-750.
[2] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
[3] 蔡春芳. 有机硫同位素组成应用于油气来源和演化研究进展[J]. 天然气地球科学, 2018, 29(2): 159-167.
[4] 田楠, 牛洪彬, 马团校, 李洋冰. 渤中坳陷渤中25-1/S油田硫化氢成因研究[J]. 天然气地球科学, 2012, 23(3): 438-442.
[5] 王连生;刘立;郭占谦;马志红;迟东辉;. 大庆油田伴生气中硫化氢成因的探讨[J]. 天然气地球科学, 2006, 17(1): 51-54.
[6] 樊广锋; 戴金星; 戚厚发; . 中国硫化氢天然气研究[J]. 天然气地球科学, 1992, 3(3): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[2] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[3] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[4] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[5] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[6] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[7] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[8] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[9] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .
[10] 郭精义,杨占龙,黄刚,杨立国. 潜江凹陷新农地区沉积微相特征与岩性油气藏[J]. 天然气地球科学, 2006, 17(2): 249 -255 .