天然气地球科学

• 非常规天然气 • 上一篇    下一篇

柳林地区煤层气勘探开发模式研究

李勇,汤达祯,许浩,孟艳军   

  1. 煤层气开发利用国家工程研究中心煤储层实验室,中国地质大学能源学院,北京 100083
  • 收稿日期:2014-01-21 修回日期:2014-03-21 出版日期:2014-09-10 发布日期:2014-09-10
  • 作者简介:李勇(1988-),男,山东潍坊人,博士研究生,主要从事非常规天然气开发地质相关研究. E-mail:cugbliyong@gmail.com
  • 基金资助:

    国家科技重大专项(编号:2011ZX05062-01);国家自然科学基金项目(编号:41272175);国土资源部公益性行业科研专项(编号:201311015-01)联合资助.

    .

Exploration and Development Model of Coalbed Methane in Liulin Area,China
 

LI Yong,TANG Da-zhen,XU Hao,MENG Yan-jun   

  1. (Coal Reservoir Laboratory of National Engineering Research Center of CBM Development and Utilization,School
    of Energy Resources,China University of Geosciences,Beijing 100083,China)
  • Received:2014-01-21 Revised:2014-03-21 Online:2014-09-10 Published:2014-09-10

摘要:

柳林地区是全国煤层气开发先导示范区,勘探开发技术逐渐完善。基于区域地质规律,分析了煤层气组成、地应力和地温场特点以及不同储层的差异|结合开发方案和技术选择,从开发效果、开发层位、钻完井设计等方面进行了规律探究。山西组煤层气CH4含量、兰氏体积和含气饱和度均较太原组高;地应力和地温场在垂向上呈现分带,以700~850m埋深最小水平主应力最高,地层呈挤压状态;不同煤层物性差异大,水动力变化是层间矛盾的主要因素。在开发效果上,山西组直井较太原组好,太原组产水量普遍较高;水平井产能效果最好,且产量相对稳定。钻井设计中创新性地采用双煤层多分支水平井,充分调用了资源潜力。在煤层气勘探开发实践中,以平衡产能为导向,由地应力、地温场和储层压力3个要素组成地质能量内循环,激励渗透率、产气量和产水量组成的响应外循环;同时以合理的气水排采制度控制内循环,其中钻井和储层改造是释放产能的驱动,合理的排采方案是维系开发平衡的驱动。
 

关键词: 柳林地区, 煤层气, 地应力, 储层评价, 平衡产能

Abstract:

Liulin area is one of the key coalbed methane (CBM) development areas in China.Based on the regional geology analysis,the CBM composition,in-situ stress and geo-temperature field,and reservoir differences were illustrated.Additionally,the CBM well development effect,pumped layers choice,and well drilling technologies were systematically discussed.Results show that,the CH4 content,Langmuir volume and gas saturation of Shanxi Formation are higher than those of the Taiyuan Formation.In-situ stress and geo-temperature field show vertical belting,and the 700m to 850m depth are the minimum horizontal principal stress.The coal properties are different from each other,and the hydrodynamic condition contributes much to the reservoiring difference.Vertical wells which penetrate coals in Shanxi Formation show better gas rate,while in Taiyuan Formation they are of higher water rate.Double-step and multi-branch horizontal wells were adopted,resulting in the full use of coals and better gas rate.Two cycles are proposed,including the inner cycle composed of in-situ stress,geo-temperature and reservoir pressure,and the outer cycle of permeability,gas rate and water rate.During CBM production,the inner cycle stimulates the outer cycle,while the reservoir reconstruction promotes the capability release and well production system maintains production balance.
 
 

Key words: Liulin area, Coalbed methane, In-situ stress, Reservoir evaluation, Balancing production

中图分类号: 

  • TE37
[1]Yang Xilu.Progress of coalbed methane exploration and development[J].Coal Geology & Exploration,1997,24(1):29-32.[杨锡禄.煤层气勘探开发进展[J].煤田地质与勘探,1997,24(1):29-32.]
[2]Yao Yanbin,Liu Dameng,Tang Dazhen,et al.A Comprehensive model for evaluating coalbed methane reservoirs in China[J].Acta Geologica Sinica,2008,82(6):1253-1270.
[3]Liu Dameng,Yao Yanbin,Tang Dazhen,et al.Coal reservoir characteristics and coalbed methane resource assessment in Huainan and Huaibei Coalfields,southern north China[J].International Journal of Coal Geology,2009,79(3):97-112.
[4]KaracanC O,Okandan E.Adsorption and gas transport in coal microstructure:Investigation and evaluation by quantitative X-ray CT imaging[J].Fuel,2001,80(4):509-520.
[5]Song Yan,Qin Shengfei,Zhao Mengjun.Two key geological factors controlling the coalbed methane reservoirs in China[J].Natural Gas Geoscience,2007,18(4):545-553.[宋岩,秦胜飞,赵孟军.中国煤层气成藏的两大关键地质因素[J].天然气地球科学,2007,18(4):543-553.]
[6]Tao Shu,Wang Yanbin,Tang Dazhen,et al.Dynamic variation effects of coal permeability during the coalbed methane development process in the Qinshui Basin,China[J].International Journal of Coal Geology,2012,93:16-22.
[7]Pashin J C.Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin:Key to understanding reservoir performance and environmental issues[J].Applied Geochemistry,2007,22(10):2257-2272.
[8]Pashin J C.Variable gas saturation in coalbed methane reservoirs of the Black Warrior Basin:Implications for exploration and production[J].International Journal of Coal Geology,2010,82(3):135-146.
[9]Yao Huifang.Physical properties and exploration and development potential of coalbed gas reservoirs in Yangjiaping,Liulin county,Shanxi province[J].Petroleum Exploration and Development,2007,34(5):548-556.[要惠芳.山西省柳林县杨家坪煤层气储集层物性及勘探开发潜力[J].石油勘探与开发,2007,34(5):548-556.]
[10]Lian Huiqing,Yin Shangxian,Li Xiaoming,et al.The controlling law of hydrodynamic conditions and coalbed methane of main aquifers in Hedong Coalfield[J].Natural Gas Geoscience,2013,24(2):252-258.[连会青,尹尚先,李小明,等.河东煤田三交区块煤层气田主含水岩组水动力场特征与控气规律[J].天然气地球科学,2013,24(2):252-258.]
[11]Jiang Bo,Xu Jinpeng,Zhu Kui,et al.Structural and hydrogeological controls of coalbed methane preservation in the eastern Ordos Basin[J].Geological Journal of China Universities,2012,18(3):438-446.[姜波,许进鹏,朱奎,等.鄂尔多斯盆地东缘构造—水文地质控气特征[J].高校地质学报,2012,18(3):438-446.]
[12]Li Yong,Tang Dazhen,Xu Hao,et al.Evolution of coal-derived hydrocarbon based on the analysis of fluid inclusions in the Permo-Carboniferous strata of Liulin area in the Ordos Basin[J].Geological Journal of China Universities,2012,18(3):419-426.[李勇,汤达祯,许浩,等.鄂尔多斯盆地柳林地区石炭纪—二叠纪含煤地层流体包裹体特征及成烃演化历史[J].高校地质学报,2012,18(3):419-426.]
[13]Dai Jinxing,Qi Houfa,Song Yan,et al.Composition,carbon isotope type and origin of coal gas in China[J].Science in China:Series B,1986,16(12):1317-1326.[戴金星,戚厚发,宋岩,等.我国煤层气组分、碳同位素类型及其成因和意义[J].中国科学:B辑,1986,16(12):1317-1326.]
[14]Song Yan,Liu Shaobo,Hong Feng,et al.Geochemical characteristics and genesis of coalbed methane in China[J].Acta Petrolei Sinica,2012,33(supplement 1):99-106.[宋岩,柳少波,洪峰,等.中国煤层气地球化学特征及成因[J].石油学报,2012,33(增刊1):99-106.]
[15]Scott A R,Kaiser W R,Ayers W B,et al.Thermogenic and secondary biogenic gases,San Juan Basin[J].AAPG Bulletin,1994,78(8):1186-1209.
[16]Bell J S,Bachu S.In situ stress magnitude and orientation estimates for Cretaceous coal-bearing strata beneath the plains area of central and southern Alberta[J].Bulletin of Canadian Petroleum Geology,2003,51(1):1-28.
[17]Teichmuller R U A.Das Kohlenstoff-Lsotopen-Verhaltnis im Methan Von Grubengas und Flozgas und Seino Abhangigkeit Von Grubengas und Flozgas und Seine Abhangigkeit Von don den Geologischen Verhaltnissen[C]//9th Geol.Mitt.1970,9:181-206.
[18]Hitchon B.Geothermal gradients,hydrodynamics,and hydrocarbon occurrences,Alberta,Canada[J].AAPG Bulletin,1984,68(6):713-743.
[19]Yang R T,Saunders J T.Adsorption of gases on coals and heat-treated coals at elevated temperature and pressure[J].Fuel,1985,64(5):616-620.
[20]Meng Yanjun,Tang Dazhen,Xu Hao,et al.Interlayer contradiction problem in coalbed methane development:A case study in Liulin area[J].Coal Geology & Exploration,2013,41(3):29-33.[孟艳军,汤达祯,许浩,等.煤层气开发中的层间矛盾问题——以柳林地区为例[J].煤田地质与勘探,2013,41(3):29-33.]
[21]Wang Hongyan,Li Jingming,Liu Honglin,et al.Progress of basic theory and accumulation law and development technology of coal-bed methane[J].Petroleum Exploration and Development,2004,31(6):14-16.[王红岩,李景明,刘洪林,等.煤层气基础理论、聚集规律及开采技术方法进展[J].石油勘探与开发,2004,31(6):14-16.]
[22]Zhao Qingbo,Sun Fenjin,Li Wuzhong,et al.Theory and Practise on Coalbed Methane Exploration and Development [M].Beijing:Petroleun Industry Press,2011:1-337.[赵庆波,孙粉锦,李五忠,等.煤层气勘探开发地质理论与实践[M].北京:石油工业出版社,2011:1-337.]
[23]Xue Gang,Xu Qian,Wang Hongxia,et al.Current situation and analysis on CBM surface gathering and transportation system in China[J].China Coalbed Methane,2011,8(5):40-44.[薛岗,许茜,王红霞,等.国内煤层气地面集输系统现状及简析[J].中国煤层气,2011,8(5):40-44.]
[24]Qin Yong.Situation and challenges for coalbed methane industrialization in China (Ⅱ):Key scientific and technological problems[J].Natural Gas Industry,2006,26(2):6-11.[秦勇.中国煤层气产业化面临的形式与挑战(Ⅱ)—— 关键科学技术问题[J].天然气工业,2006,26(2):6-11.]
[25]Shen Jian.CBM-reservoring effect in deep strata[J].Journal of China Coal Society,2011,36(9):1599-1600.[申建.论深部煤层气成藏效应[J].煤炭学报,2011,36(9):1599-1600.]
[26]Li Junqian,Liu Dameng,Yao Yanbin,et al.Controls of gas slippage and effective stress on the gas permeability of coal[J].Natural Gas Geoscience,2013,24(5):1074-1078.[李俊乾,刘大锰,姚艳斌,等.气体滑脱效应及有效应力对煤岩气相渗透率的控制作用[J].天然气地球科学,2013,24(5):1074-1078.]
[27]Jerry L S,Paul S S,Richard A S.A Guide to Coalbed Methane Reservoir Engineering[M].Chicago:Gas Research Institute,1996:18-19.
 
[1] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[2] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[3] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[4] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[5] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[6] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[7] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[8] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[9] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
[10] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[11] 郭晨,夏玉成,卢玲玲,任亚平. 黔西比德—三塘盆地多层叠置独立含煤层气系统发育规律与控制机理[J]. 天然气地球科学, 2017, 28(4): 622-632.
[12] 申建,张春杰,秦勇,张兵. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学, 2017, 28(3): 479-487.
[13] 郭晓龙,李璇,代春萌,边海军,许旭华,许晶. 煤层气地球物理预测方法[J]. 天然气地球科学, 2017, 28(2): 287-295.
[14] 马平华,霍梦颖,何俊,彭英明,邵先杰,接敬涛. 煤层气井压裂影响因素分析与技术优化——以鄂尔多斯盆地东南缘韩城矿区为例[J]. 天然气地球科学, 2017, 28(2): 296-304.
[15] 孙超群,李术才,李华銮,崔伟,宋曙光. 煤层气藏应力—渗流流固耦合模型及SPH求解[J]. 天然气地球科学, 2017, 28(2): 305-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!