天然气地球科学

• 非常规天然气 • 上一篇    

模拟冻土区水合物地层骨架的人造岩心实验研究

郑明明, 蒋国盛,宁伏龙,刘力,张凌,李实,张可,Chikhotkin V.F.   

  1. 1.中国地质大学(武汉)工程学院,湖北 武汉 430074;2.中国石油勘探开发研究院提高石油采收率国家重点实验室,北京 100083
  • 收稿日期:2013-08-13 修回日期:2013-11-20 出版日期:2014-07-10 发布日期:2014-07-10
  • 作者简介:郑明明(1988-),男,江苏连云港人,博士研究生,主要从事天然气水合物理论及勘探开发技术研究.
  • 基金资助:

    国家自然科学基金项目(编号:40974071;51274177);教育部霍英东基金项目(编号:132019);中国地质大学(武汉)中央高校基金项目(编号:CUGL100410,CUG120112);湖北省自然科学基金重点项目(编号:2012FFA047)联合资助.

Experimental Study on Artificial Core Samples of Simulating Hydrate Bearing Sediment Skeleton in Permafrost

ZHENG Ming-ming, JIANG Guo-sheng, NING Fu-long, LIU Li, ZHANG Lin, LI Shi, ZHANG Ke,Chikhotkin V.F.   

  1. 1.Faculty of Engineering,China University if Geosciences,Wuhan 430074,China; 2.State Key laboratory of Enhanced Oil Recovery,Beijing 100083,China
  • Received:2013-08-13 Revised:2013-11-20 Online:2014-07-10 Published:2014-07-10

摘要:

目前,天然气水合物物性认识和资源评价研究都受到了天然岩心来源的极大限制。因此,开发出一套贴近于水合物地层的人造岩心技术特别是基础骨架制备思路显得尤为必要。从实际水合物地层特性出发,选取地质资料丰富、水合物成藏条件良好的美国阿拉斯加北部斜坡冻土区Mount Elbert Unit C-GH1井段地层作为模拟对象,选用石英砂环氧树脂压制胶结岩心方法,通过全面实验分析了影响人造岩心渗透率的主要因素,然后以渗透率和孔隙度为实验指标设计正交实验研究各因素对指标的影响,确定了与目标地层渗透率和孔隙度最为接近的2个配方,并通过力学单轴抗压强度值的比较进一步明确了较优配方。实验研究结果表明,设计的较优配方与目标地层的粒径配比、渗透率、单轴抗压强度和密度基本相同,孔隙度则较为接近,采用这种技术流程可以制备出贴近原位的水合物沉积物骨架。

关键词: 天然气水合物, 人造岩心, 正交实验, 渗透率, 孔隙度, 力学强度

Abstract:

Understanding of physical properties and resource evaluation of gas hydrate have been largely limited by the source of natural cores.Therefore,developing a manufacturing method of artificial cores which are similar to gas hydrate bearing sediment,especially the ideas of producing basic skeleton for simulating hydrate reservoirs are indispensable.Firstly,this article analyzed the characteristics of real hydrate bearing sediments,chose unit C-CH1 in Mount Elbert,Alaska North Slope as target simulated stratum with plenty of geological data and rich gas hydrate accumulation,adopted cementation of quartzite and epoxy for simulating real stratum.Secondly,comprehensive experiment was used to determine the main factors of affecting artificial core samples′ permeability,then orthogonal experiment of target values of permeability and porosity was designed to analyze the effects of factors on experiment target values.Finally,according to the experimental results,two core sample formulas were determined which are similar to target simulation stratum and then the better one was chosen by comparing uniaxial compressive strength values.The experimental results indicate that particle gradation,permeability,uniaxial compressive strength and density of the final formula are almost the same to target hydrate stratum′s and their porosities are similar.This technique process can be used to prepare artificial core samples which are close to the in-suit hydrate bearing sediment skeleton.

Key words: Gas hydrate;Artificial core sample, Orthogonal experiment, Permeability;porosity, Mechanical strength

中图分类号: 

  • TE132.2
[1]Xu Wenshi,Yu Xinghe,Liu Nina,et al.The development perspective and environmental problems of natural gas hydrates[J].Natural Gas Geoscience,2005,16(5):680-683.[徐文世,于兴河,刘妮娜,等.天然气水合物开发前景和环境问题[J].天然气地球科学,2005,16(5):680-683.]
[2]Fan Shuanshi,Guan Jin′an,Liang Deqing,et al.A dynamic theory on natural gas hydrate reservoir formation[J].Natural Gas Geoscience,2007,18(6):819-826.[樊栓狮,关进安,梁德青,等.天然气水合物动态成藏理论[J].天然气地球科学,2007,18(6):819-826.]
[3]He Jiaxiong,Zhu Youhai,Chen Shenghong,et al.Genetic types and mineralization characteristics of gas hydrate and resources potential of northern South China Sea[J].Natural Gas Geoscience,2009,20(2):237-243.[何家雄,祝有海,陈胜红,等.天然气水合物成因类型及成矿特征与南海北部资源前景[J].天然气地球科学,2009,20(2):237-243.]
[4]Jiang Guosheng,Wang Da,Tang Fenglin,et al.Exploration and Development of Gas Hydrate[M].Wuhan:China University of Geosciences Press,2002:6-9.[蒋国盛,王达,汤凤林,等.天然气水合物的勘探与开发[M].武汉:中国地质大学出版社,2002:6-9.]
[5]Li Shuxia,Chen Yueming,Wang Xiaohong,et al.Experimental research on natural gas hydrates forming and depressurized decomposition in the sand-packed model[J].Oil-Gasfield Surface Engineering,2009,28(7):1-3.[李淑霞,陈月明,王晓红,等.填砂模型中天然气水合物合成及降压分解实验研究[J].油气田地面工程,2009,28(7):1-3.]
[6]Miyazaki K,Masui A,Sakamoto Y,et al.Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J].Journal of Geophysical Research:Solid Earth (1978-2012),2011,116:B06102.
[7]Winters W J,Waite W F,Mason D H,et al.Methane gas hydrate effect on sediment acoustic and strength properties[J].Journal of Petroleum Science and Engineering,2007,56(1):127-135.
[8]Zhang Yu,Wu Huijie,Li Xiaosen,et al.Experimental study on formation behavior of methane hydrate in porous media[J].Acta Chimica Sinica,2011,69(19):2221-2227.[张郁,吴慧杰,李小森,等.多孔介质中甲烷水合物的生成特性的实验研究[J].化学学报,2011,69(19):2221-2227.]
[9]Uchida T,Ebinuma T,Ishizaki T.Dissociation condition measurements of methane hydrate in confined small pores of porous glass[J].The Journal of Physical Chemistry B,1999,103(18):3659-3662.
[10]Yan L,Chen G,Pang W,et al.Experimental and modeling study on hydrate formation in wet activated carbon[J].The Journal of Physical Chemistry B,2005,109(12):6025-6030.
[11]Li Mingchuan.Theoretical and Experimental Study on Natural Gas Hydrates Dissociation of Hot Water Injection in Porous Medium[D].Chengdu:Southwest Petroleum University,2005,84-96.[李明川.多孔介质中天然气水合物注热水分解理论及实验研究[D].成都:西南石油学院,2005:84-96.]
[12]Zhang Peng,Wu Qingbai,Jiang Guanli,et al.Formation reaction characteristics of methane hydrate in different granular media[J].Natural Gas Geoscience,2013,24(2):265-272.[张鹏,吴青柏,蒋观利,等.不同颗粒介质内甲烷水合物形成反应特征[J].天然气地球科学,2013,24(2):265-272.]
[13]Makogon Y F.Hydrates of Natural Gas[M].Translated from Russian by Cieslewicz W I.Tulsa,Oklahoma:PennWell,1981:1-10.
[14]Collett T S.Permafrost-associated gas hydrate accumulationsa[J].Annals of the New York Academy of Sciences,1994,715(1):247-269.
[15]Dallimore S R,Collett T S.Intrapermafrost gas hydrates from a deep core hole in the Mackenzie Delta,Northwest Territories,Canada[J].Geology,1995,23(6):527-530.
[16]Zhu Youhai,Zhang Yongqin,Wen Huaijun,et al.Gas hydrates in the Qilian mountain permafrost,Qinghai,northwest China[J].Acta Geologica Sinica,2009,83(11):1762-1771.[祝有海,张永勤,文怀军,等.青海祁连山冻土区发现天然气水合物[J].地质学报,2009,83(11):1762-1771.]
[17]Inks T L,Lee M W,Agena W F,et al.Seismic prospecting for gas-hydrate and associated free-gas prospects in the Milne Point area of northern Alaska[C]//Collett T,Johnson A,Knapp C,et al.Natural gas hydrates-Energy resource potential and associated geologic hazards:AAPG Memoir 89,2009:555-583.
[18]Lee M W,Collett T S,and Inks T L.Seismic-attribute analysis for gas-hydrate and free-gas prospects on the North Slope of Alaska[C]//Collett T S,Johnson A,Knapp C,et al.Natural gas hydrates-Energy resource potential and associated geologic hazards:AAPG Memoir 89,2009:541-554.
[19]Lee M W,Agena W F,Collett T S,et al.Pre-and post-drill comparison of the Mount Elbert gas hydrate prospect,Alaska North Slope[J].Journal of Marine and Petroleum Geology,2011,28(2),578-588.
[20]Winters W,Walker M,Hunter R,et al.Physical properties of sediment from the Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope[J].Marine and Petroleum Geology,2011,28(2):361-380.
[21]Rose K,Boswell R,Collett T S.Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope:Coring operations,core sedimentology,and lithostratigraphy[J].Marine and Petroleum Geology,2011,28(2):311-331.
[22]Dai S,Lee C,Carlos Santamarina J C.Formation history and physical properties of sediments from the Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope[J].Marine and Petroleum Geology,2011,28(2):427-438.
[23]Zhang Guoxin,Jiang Jianning,Guo Jinzhong,et al.The method of making loosely compacted sand cores[J].Drlling Fluid and Completion Fluid,2007,24(1):23-25.[张国新,蒋建宁,郭进忠,等.疏松砂岩室内岩心制作方法[J].钻井液与完井液,2007,24(1):23-25.]
[24]Tang Renqi,Yue Lu.Manufacture and research on LC aritifitial core samples[J].Oil Drilling and Production Technology,1986,8(5):75-79.[唐仁骐,岳陆.LC人造岩心的制作和研究[J].石油钻采工艺,1986,8(5):75-79.]
[25]Tang Renqi,Zeng Yuhua.Research and manufacture on GM aritifitial core samples[J].Multiple Oil and Gas Field,1994,5(3):50-53.[唐仁骐,曾玉华.GM人造岩样的研究和制作[J].复式油气田,1994,5(3):50-53.]
[26][JP2]Li Jianlu,Cao Tie,Lu Shoulilang,et al.Laboratory physical simulation experiment of ASP flooding-difference between natural and artificial core[J].Petroleum Geology and Oilfield Development in Daqing,2003,22(4):64-66.[李建路,曹铁,鹿守亮,等.三元复合驱室内物理模拟实验研究——天然岩心与人造岩心的差异[J].大庆石油地质与开发,2003,22(4):64-66.][JP]
[27]Lu Xiangguo,Gao Zhenhuan.Experimental study on factors of permeability of artifitial core samples[J].Petroleum Geology and Oilfield Development in Daqing,1994,13(4):53-55.[卢祥国,高振环.人造岩心渗透率影响因素实验研究[J].大庆石油地质与开发,1994,13(4):53-55.]
[28]Pi Yanfu.Technology and application of making artificial cores by the cementation of quartzite and colophony[J].Science Technology and Engineering,2010,10(28):6998-7000.[皮彦夫.石英砂环氧树脂胶结人造岩心的技术与应用[J].科学技术与工程,2010,10(28):6998-7000.]
[29]Liang Wanlin.Study on preparing artificial cores[J].Petroleum Instruments,2008,22(2):72-74.[梁万林.人造岩心制备技术研究[J].石油仪器,2008,22(2):72-74.]
[30]Xu Hongbo,Liu Li,Li Jiange.The manufacturing methods of artificial sandstone core in Daqing Oilfield[J].Science Technology and Engineering,2011,11(30):7344-7348.[徐洪波,刘莉,李建阁.大庆油田砂岩人造岩心制作方法[J].科学技术与工程,2011,11(30):7344-7348.]
[31]Yu Bao,Song Yanjie,Jia Guoyan,et al.Design and making of synthetic cores for laminated and dispersed shaly sands[J].Journal of Daqing Petroleum Institute,2006,30(4):88-90.[于宝,宋延杰,贾国彦,等.混合泥质砂岩人造岩心的设计和制作[J].大庆石油学院学报,2006,30(4):88-90.]
[32]Ning Fulong,Jiang Guosheng,Zhang Lin,et al.Analysis of key factors affecting wellbore stability in gas hydrate formations[J].Petroleum Drilling Techniques,2008,36(3):59-61.[宁伏龙,蒋国盛,张凌,等.影响含天然气水合物地层井壁稳定的关键因素分析[J].石油钻探技术,2008,36(3):59-61.]
[33]Yu Yibing,Ning Fulong,Jiang Guosheng,et al.Mechanical behavior of pure hydrates[J].Advances in Mechanics,2012,42(3):347-358.[余义兵,宁伏龙,蒋国盛,等.纯水合物力学性质研究进展[J].力学进展,2012,42(3):347-358.]
[34]Fu Wei.Experimental Study on Electrical Resistivity Characteristics of Silty Elay Under Uniaxial Compression and Frozen-thaw Cycles[D].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Science,2009:49-56.[付伟.单轴压缩与冻融作用下粉质黏土电阻率特性实验研究[D].武汉:中国科学院武汉岩土力学研究所,2009:49-56.]
[35]Liu Hongjun,Chen Xianchun,Ma Jiefeng.Study on mechanical property of permafrost[J].Journal of Northeast Forestry University,2005,33(2):102-103.[刘红军,程显春,马介峰.多年冻土的力学性质[J].东北林业大学学报,2005,33(2):102-103.]
 
[1] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[2] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[4] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[5] 王清辉,冯进. 烃源岩TOC测井评价方法及应用——以珠江口盆地文昌组为例[J]. 天然气地球科学, 2018, 29(2): 251-258.
[6] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[7] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[8] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[9] 梁金强,付少英,陈芳,苏丕波,尚久靖,陆红锋,方允鑫. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
[10] 吴闯,尹宏伟,于常青,皮金云,吴珍云,汪伟,张佳星. 青海省木里地区天然气水合物构造成藏机制——来自物理模拟实验的启示[J]. 天然气地球科学, 2017, 28(5): 771-784.
[11] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[12] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[13] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[14] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[15] 艾志久,王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!