天然气地球科学

• 论著 • 上一篇    下一篇

提高砂岩储层人工裂缝复杂度的压裂技术及其应用

  

  1. 1.中国石油大学石油天然气工程学院,北京 102249; 2.中国石油勘探开发研究院廊坊分院压裂酸化中心,河北 廊坊 065007; 3.中国石油青海油田分公司钻采工程研究院,甘肃 敦煌 736200
  • 收稿日期:2013-08-01 修回日期:2013-11-05 出版日期:2014-07-10 发布日期:2014-07-10
  • 作者简介:翁定为(1981-),男,湖北枝江人,博士,工程师,主要从事压裂工艺研究.
  • 基金资助:

    国家科技重大专项课题“低渗、特低渗油气储层高效改造关键技术”(编号:2011ZX05013-003);中国石油天然气股份公司重大科技专项课题“柴达木盆地难采储量有效动用技术攻关研究”(编号:2011E-0307)联合资助.

Study and Application on Improving Hydraulic Fracture Complexity in Sandstone Reservoir

  1. 1.Faculty of Petroleum Engineering,China University of Petroleum,Beijing 102249,China; 2.Acidizing and Fracturing Center,Langfang Branch of Research Institute of Petroleum Exploration and Development,PetroChina,Langfang 065007,China; 3.Drilling and Production Institute of Qinhai Oilfield,Dunhuang 736200,China
  • Received:2013-08-01 Revised:2013-11-05 Online:2014-07-10 Published:2014-07-10

摘要:

提高裂缝复杂度是提高储层改造体积的重要组成部分。为明确砂岩储层复杂裂缝形成的控制因素及实现方法,在物理模拟实验结果的基础上,建立了天然裂缝储层形成复杂裂缝的数学模型,采用数值模拟方法研究了应力场,提出并试验了多种施工工艺。研究结果显示砂岩储层形成复杂裂缝的必要条件包括改变应力场、发育天然裂缝或提高缝内净压力。其中天然裂缝是砂岩储层能否形成复杂裂缝最重要的因素,储层最大最小主应力差越大,天然裂缝与人工裂缝夹角越大,形成复杂裂缝所需缝内压力越大;多缝应力干扰可有效改变应力场。现场监测及压后分析证实试验井形成了复杂裂缝。该技术为低渗尤其是致密砂岩油气藏的经济开发提供了有效手段。

关键词: 砂岩储层, 复杂裂缝, 应力场, 天然裂缝, 缝内净压力, 缝网压裂

Abstract:

Improving the fracture complexity is one of the most important parts to improve the stimulated reservoir volume.To understand when and how the complex fracture form in sandstone reservoir,a model is established to describe the natural fractured reservoir,the stress filed is analyzed by means of numerical simulation method and several treatment technical are brought forward based on the physical simulation experiment results.The analysis show that natural fractures,stress field inverting and elevating fracture pressure are the necessary condition to form complex fracture,and natural fractures are the most important ones.The bigger the principal stress bias and the orientation between hydraulic fracture and natural fracture are,the higher the fracture pressure is needed.Two and two more factures spread simultaneously could invert the stress field near the fracture.The monitoring and analysis show that the experimental wells form complex fractures by applying the technique.Therefore,the fracturing makes these oilfields with low permeability especially the tight sandstone oilfields be developed economically.

Key words: Sandstone reservoir, Complex fracture;Stress field, Natural fracture, Net pressure, Network fracturing

中图分类号: 

  • TE357.2

[1]Wu Qi,Xu Yun,Wang Xiaoquan,et al.Volume fracturing technology[JP] of unconventional reservoirs:Connotation,optimization design and implementation[J].Petroleum Exploration and Development,2012,39(3):352-358.[吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术——内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.]
[2]Zheng Junwei,Sun Deqiang,Li Xiaoyan,et  al.Advances in exploration and exploitation technologies of shale gas[J].Natural Gas Geoscience,2011,22(3):511-516.[郑军卫,孙德强,李小燕,等.页岩气勘探开发技术进展[J],天然气地球科学,2011,22(3):511-516.]
[3]Cipolla C,Weng X,Onda H,et al.New Algorithms and Integrated Workflow for Tight Gas and Shale Completion[R].SPE Annual Technical Conference and Exhibition,30 October-2 November,Denver,Colorado,USA.SPE 146872,2011.
[4]Ramurthy M,Barree R,Kunder D,et al.Surface Area vs Conductivity Type Treatments in Shale Reservoirs[R].SPE Hydraulic Fracturing Technology Conference,24-26 January,The Woodlands,Texas,USA.SPE 140169,2011.
[5]Warpinski N R,Mayerhofer M J,Vincent M C,et al.Stimulating Unconventional Reservoirs:Maximizing Network Growth While Optimizing Fracture Conductivity[R].SPE Unconventional Reservoirs Conference,10-12 February,Keystone,Colorado,USA.SPE 114173,2008.
[6]Lei Qun,Xu Yun,Jiang Tingxue,et al.“Fracture network”fracturing technique for improving post-fracturing performance of low and ultra-low permeability reservoir[J].Acta Petrolei Sincia,2009,30(2):237-241.[雷群,胥云,蒋廷学,等.用于提高低—特低渗透油气藏改造效果的缝网压裂技术[J].石油学报,2009,30(2):237-241.]
[7]Weng Dingwei,Lei Qun,Xu Yun,et al.Study and application of network fracturing[J].Acta Petrolei Sincia,2011,32(2):280-284.[翁定为,雷群,胥云,等.缝网压裂技术研究及其现场应用[J].石油学报,2011,32(2):280-284.]
[8]Jin Yan,Zhang Xudong,Chen Mian.Hydraulic fracturing initiation pressure models for vertical wells in natural fractured formations[J].Acta Petrolei Sinica,2005,26(6):113-118.[金衍,张旭东,陈勉.天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J].石油学报,2005,26(6):113-118.]
[9]Cheng Yuanfang,Xu Taishuang,Wu Bailie,et al.Experimental study on the hydraulic fracture′s morphology of coalbed[J].Natural Gas Geoscience,2013,24(1):134-137.[程远方,徐太双,吴百烈,等.煤岩水力压裂裂缝形态实验研究[J].天然气地球科学,2013,24(1):134-137.]
[10]Shi Yang,Zhou  Fujian,Yang Xianyou,et al.Physical Simulation Tests on Fiber Diverting Fracturing[R].Proceeding of China Oil and Gas Exploration and Deveilopment Symposium,2012.\[s.n.\].[石阳,周福建,杨贤友,等.纤维转向压裂物理模拟实验研究[R].“全国油气田勘探开发与技术挑战暨难采储量开发技术研讨会”论文集,2012.\[出版者不祥\].]
[11]Lou Yishan,Jin Yequan.Rock Mechanics and Petroleum Engineering[M].Beijing:Petroleum Industry Press,2006:117-119.[楼一珊,金业权.岩石力学与石油工程[M].北京:石油工业出版社,2006:117-119.]
[12]Potluri N,Zhu D, Hill A D. Effect of Natural Fractures on Hydraulic Fracture Propagation[R].SPE European Formation Damage Conference,25-27 May,Sheveningen,The Netherlands.SPE 94568,2005.
[13]Yao Fei,Weng Dingwei,Li Yang,et al.Study and application of stress field prediction software for refractured oil wells[J].Acta Petrolei Sinica,2007,28(4):130-133.[姚飞,翁定为,李阳,等.重复压裂前应力场预测软件研究及现场应用[J].石油学报,2007,28(4):130-133.]
[14]Wright C A,Conant R A,Stewart D W,et al.Reorientation of Propped Refracture Treatments[R].Rock Mechanics in Petroleum Engineering,29-31 August,Delft,Netherlands.SPE 28078,1994.[JP]
[15]Siebrits E,Elbel J L,Hoover R S et al.Refracture Reorientation Enhances Gas Production in Barnett Shale Tight Gas Wells[R].SPE Annual Technical Conference and Exhibition,1-4 October,Dallas,Texas.SPE 63030.2000.

[1] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[2] 张艳,张春雷,高世臣. 基于SOM和HSV染色技术的致密砂岩储层地震相分析[J]. 天然气地球科学, 2018, 29(2): 259-267.
[3] 韩秀玲,杨贤友,熊春明,石阳,高莹,张福祥,连胜江,李向东,王萌,李福涛. 超深裂缝性厚层改造效果影响因素分析与高效改造对策[J]. 天然气地球科学, 2017, 28(8): 1280-1286.
[4] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[5] 杨智峰,曾溅辉,韩菲,冯枭,冯森,张译丹,乔俊程. 鄂尔多斯盆地西南部长6—长8段致密砂岩储层微观孔隙特征[J]. 天然气地球科学, 2017, 28(6): 909-919.
[6] 张凤奇,钟红利,魏登峰,张凤博,柳伟明,刘伟. 鄂尔多斯盆地陕北斜坡东南部长7段致密砂岩油藏成藏物性下限[J]. 天然气地球科学, 2017, 28(2): 232-240.
[7] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
[8] 周露,莫涛,王振鸿,朱文慧,尚江伟,陈维力,李梅,张琪. 塔里木盆地克深气田超深层致密砂岩储层裂缝分级分组合特征[J]. 天然气地球科学, 2017, 28(11): 1668-1677.
[9] 江同文,张辉,王海应,尹国庆,肖香姣. 塔里木盆地克拉2气田断裂地质力学活动性对水侵的影响[J]. 天然气地球科学, 2017, 28(11): 1735-1744.
[10] 刘春,张荣虎,张惠良,王波,黄伟. 塔里木盆地库车前陆冲断带不同构造样式裂缝发育规律:证据来自野外构造裂缝露头观测[J]. 天然气地球科学, 2017, 28(1): 52-61.
[11] 王玉满,李新景,董大忠,张晨晨,王淑芳,黄金亮,管全中. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610.
[12] 刘晓鹏,刘燕,陈娟萍,胡爱平. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.
[13] 韩文学,陶士振,姚泾利,麻伟娇. 鄂尔多斯盆地陇东地区长7段致密储层精细表征[J]. 天然气地球科学, 2016, 27(5): 820-826.
[14] 陈文浩,王志章,潘潞,李汉林,侯加根. 致密砂岩储层流动单元定量识别方法探讨[J]. 天然气地球科学, 2016, 27(5): 844-850.
[15] 桂丽黎,赵孟军,刘可禹,罗秘,孟庆洋,袁莉, 郝加庆. 柴达木盆地尕斯地区古近系砂岩储层流体—成藏演化特征[J]. 天然气地球科学, 2016, 27(2): 289-297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!