天然气地球科学

• 非常规天然气 • 上一篇    下一篇

延长组陆相页岩含气量及其主控因素——以鄂尔多斯盆地柳坪171井为例

曾维特,张金川,丁文龙,王香增,朱定伟,刘珠江   

  1. 1.中国地质大学能源学院,北京 100083;
    2.海相储层演化与油气富集机理教育部重点实验室,中国地质大学,北京 100083;
    3.页岩气勘查与评价国土资源部重点实验室,中国地质大学,北京 100083;
    4.延长石油集团有限责任公司,陕西 西安 710075;
    5.中国石油化工股份有限公司南方勘探开发分公司,四川 成都 610041
  • 收稿日期:2013-03-27 修回日期:2013-05-31 出版日期:2014-02-10 发布日期:2014-02-10
  • 通讯作者: 曾维特zengweite@126.com. E-mail:zengweite@126.com.
  • 作者简介:曾维特(1986-),男,海南澄迈人,博士研究生,主要从事石油构造分析与非常规油气资源勘探评价研究. E-mail:zengweite@126.com.
  • 基金资助:

    国家科技重大专项专题(编号:2011ZX05018-001-002\,2011ZX05009-002-205);国家自然科学基金面上项目(编号:41272167\,41002072\,41372139\,41072098)联合资助.

The Gas Content of Continental Yanchang Shale and Its Main ControllingFactors:A Case Study of Liuping-171 Well in Ordos Basin

ZENG Wei-te,ZHANG Jin-chuan,DING Wen-long,WANG Xiang-zeng,ZHU Ding-wei,LIU Zhu-jiang   

  1. 1.School of Energy Resources,China University of Geosciences,Beijing 100083,China;2.Key Laboratory for MarineReservoir Evolution and Hydrocarbon Abundance Mechanism,Ministry of Education,China University of Geosciences,Beijing 100083,China;3.Key Laboratory for Shale Gas Exploration and Assessment,Ministry of Land and Resources  of the People′s Republic of China,University of Geosciences,Beijing 100083,China;4.Yanchang Petroleum(Group)Co.,Ltd.,Xi′an 710075,China;5.SINOPEC Exploration Southern Company,Chengdu 610041,China
  • Received:2013-03-27 Revised:2013-05-31 Online:2014-02-10 Published:2014-02-10

摘要:

运用直接解吸法和间接法计算柳坪171井延长组长7段、长8段、长9段页岩游离气含量、吸附气含量和总气量,结合分析延长组页岩岩矿组分、有机地球化学特征、孔隙结构与孔隙体积,确定了延长组陆相页岩含气量及主控因素,并对含气量与主控因素之间关系做了定性及半定量研究。结果表明:延长组页岩含气量以吸附气量为主,其中长7段页岩含气量为3.71~6.26m3/t,游离气百分比为22.53%~35.29%,平均为29.22%;长8段页岩含气量为3.68~5.19m3/t,游离气占总含气量的24.43%;长9段页岩含气量最高,为5.57~7.80m3/t,游离气含量比例为31.64%。随着有机碳含量的增加,可供天然气吸附的比表面增大,页岩吸附气量也增大,同时有机质成熟度的提高促进有机组分纳米级孔隙的产生,从而增加页岩气储集空间,因此有机碳含量、镜质体反射均与含气量呈正相关关系。与海相页岩不同,延长组陆相页岩石英主要来源于陆源碎屑,含气量与石英含量呈负相关关系。黏土矿物含量与含气量呈弱正相关,主要表现在伊蒙混层、伊利石对页岩气的吸附能力。含气量与微孔体积相关性不明显,与中孔和宏孔均具有正相关关系。

关键词: 陆相页岩, 延长组, 鄂尔多斯盆地, 柳坪171井, 含气量, 主控因素

Abstract:

The direct desorption method and indirect method were used for calculating the free gas content,adsorbed gas content and total gas content of Chang 7 Shale,Chang 8 Shale and Chang 9 Shale in Liuping-171 Well respectively.By analyzing the mineralogy,geochemical characteristics,pore structure and pore volume of Yanchang shale,the main controlling factors of gas content had been confirmed,which had been analyzed qualitatively or semi-quantitatively.The results show that,the gas content of Yanchang shale is dominated by adsorbed gas content.In particular,the gas content of Chang 7 shale is 3.71-6.26m3/t of which the free gas content is 22.53%-35.29%,with an average of 29.22%.The gas content of Chang 8 shale is 3.68-5.19m3/t of which the free gas content is 24.43%.The gas content of Chang 9 shale is 5.57-7.80 m3/t of which the free gas content is 31.64%.With the increase of organic carbon content,the specific surface area available for gas adsorption increases accordingly,therefore,the adsorbed gas content increases.The organic carbon content shows positive correlation with the total pore volume,moreover,high maturity promoted the development of organic nanopores which caused the increase of shale gas reservoir space.Hence,TOC  and vitrinite reflectance show positive correlation with the gas content respectively.Different from marine shale,the source of quartz in continental Yanchang shale is the detrital material of terrigenous origin,therefore,the quartz content is negatively correlated with gas content.The clay content has weak positive correlation with the gas content,which mainly manifested as the adsorption capacity of illite smectite mixed layer clay and illite for shale gas.The correlation between gas content and micropore volume is not obvious.While the motion state of methane molecules changed because of which the thermodynamic state changed,the macropore and mesopore with a greater pore size and pore throat are easier to be filled by methane molecules,therefore,the macropore and mesopore volume show positive correlation with the gas content.

Key words: Continental shale, Yanchang Formation, Ordos Basin, Liuping-171 well, Gas content, Controlling factors

中图分类号: 

  • TE122.2

[1]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.

[2]Hill D G,Nelson C R.Reservoir properties of the Upper Cretaceous Lewis shale,a new natural gas play in the San Juan Basin[J].AAPG Bulletin,2000,84(8):1240.

[3]Warlick D.Gas shale and CBM development in North America[J].Oil and Gas Financial Journal,2006,3(11):1-5.

[4]Li Xinjing,Hu Suyun,Cheng Keming.Suggestions from the development of fractured shale gas in North America[J].Petroleum Exploration and Development,2007,34(4):392-400.[李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发,2007,34(4)392-400.]

[5]Li Xinjing,Lü Zonggang,Dong Dazhong,et al.Geologic controls on accumulation of shale gas in North America[J].Natural Gas Industry,2009,29(5):27-32.[李新景,吕宗刚,董大忠,等.北美页岩气资源形成的地质条件[J].天然气工业,2009,29(5):27-32.]

[6]Nie Haikuan,Zhang Jinchuan,Zhang Peixian,et al.Shale gas reservoir characteristics of Barnett Shale Gas Reservoir in Fort Worth Basin[J].Geological Science and Technology Information,2009,28(2):87-93.[聂海宽,张金川,张培先,等.福特沃斯盆地Barnett页岩气藏特征及启示[J].地质科技情报,2009,28(2):7-93.]

[7]Tan Rongrong.Shale gas has been the main force of added proved reserves the United States[J].Natural Gas Industry,2009,(5):81.[谭蓉蓉.页岩气成为美国新增探明储量的主力军[J].天然气工业,2009,29(5):81.]

[8]Li Yifan,Fan Tailiang,Gao Zhiqian,et al.Sequence stratigraphy of silurian black shale and its distribution in the southeast area of Chongqing[J].Natural Gas Geoscience,2012,23(2):300-306.[李一凡,樊太亮,高志前,等.渝东南地区志留系黑色页岩层序地层研究[J].天然气地球科学,2012,23(2):300-306.]

[9]Nie Haikuan,Tang Xuan,Bian Ruikang.Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J].Acta Petrolei Sinica,2009,30(4):484-491.[聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491.]

[10]Jiu Kai,Ding Wenlong,Li Yuxi,et al.Structural Features in northern Guizhou area and reservoir fracture of Lower Cambrian shale gas[J].Natural Gas Geoscience 2012,(4):797-804.[久凯,丁文龙,李玉喜,等.黔北地区构造特征与下寒武统页岩气储层裂缝研究[J].天然气地球科学,2012,(4):797-804.]

[11]Jiu Kai,Ding Wenlong,Huang Wenhui,et al.Formation environment and controlling factors of organic-rich shale of Lower Cambrian in Upper Yangtze region[J].Geoscience,2012,(3):547-554.[久凯,丁文龙,黄文辉,等.上扬子地区下寒武统海相富有机质页岩形成环境与主控因素分析[J].现代地质,2012,(3):547-554.]

[12]Wang Xiangzeng,Zhang Jinchuan,Cao Jinzhou,et al.A preliminary discussion on evaluation of continental shale gas resources:A case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan area of Yanchang[J].Earth Science Frontiers,2012,19(2):192-197.[王香增,张金川,曹金舟,等.陆相页岩气资源评价初探:以延长直罗—下寺湾区中生界长7段为例[J].地学前缘,2012,19(2):192-197.]

[13]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng,et al.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.[张金川,金之钧,袁明生,等.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.]

[14]Xu Liming,Zhou Lifa,Zhang Yikai,et al.Characteristics and tectonic setting of tectono-stress field of Ordos Basin[J].Geotectonica et Metallogenia,2006,30(4):455-462.[徐黎明,周立发,张义楷,等.鄂尔多斯盆地构造应力场特征及其构造背景[J].大地构造与成矿学,2006,30(4):455-462.]

[15]Yang Junjie.Tectonic Evolution and Gas Reservoirs Distribution in Erdos Basin[M].Beijing:Petroleum Industry Press,2002:60-85.[杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002:60-85.]

[16]Zhang Wenzheng,Yang Hua,Li Shanpeng.Hydrocarbon accumulation significance of Chang 9-1 high-quality lacustrine source rocks of Yanchang Formation,Ordos Basin[J].Petroleum Exploration and Development,2008,35(5):557-562.[张文正,杨华,李善鹏.鄂尔多斯盆地长9-1湖相优质烃源岩成藏意义[J].石油勘探与开发,2008,35(5):557-562.]

[17]Bertard C,Bruyet B,Gunther J.Determination of desorbable gas concentration of coal(direct method)[J].International Journal of Rock Mechanics and Minig Science,1970,7(1):51-65.

[18][KG*2/3]Mavor M.Barnett Shale Gas-in-Place Volume Including Sorbed and Free Gas Volume[C].AAPG Southwest Section Meeting,2003.

[19]Ross D J K,Bustin R M.Sediment geochemistry of the lower Jurassic Gordondale member,northeastern British Columbia[J].Bulletin of Canadian Petroleum Geology,2006,54(4):337-365.

[20]Hickey J J,HenkB.Lithofacies summary of the mississippian Barnett shale Mitchell 2 T.P.Sims well,Wise Country,Texas[J].AAPG Bulletin,2007,91(4):437-443.

[21]Lu X C,Li F C,Watson A T.Adsorption measurements in Devonian shales[J].Fuel,1995,74:599-603.

[22]Hill D G,Lombardi T E,Martin J P.Fractured shale gas potential in New York[C].Annual Conference-Ontario Petroleum Institute,2002:1-11.

[23]Ross D J K,Bustin R M.Shale gas potential of the lower Jurassic gordondale member northeastern British Columbia,Canada[J].Bulletin of Canadian Petroleum Geology,2007,55(1):51-75.

[24]Chalmers G R L,Bustin R M.Lower cretaceous gas shales in northeastern British Columbia,PartⅠ:Geological controls on methane sorption capacity[J].Bulletin of Canadian Petroleum Geology,2008,56(1):1-61.

[25]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.

[26]Martineau D F.History of the Newark East field and the Barnett Shale as a gas reservoir[J].AAPG Bulletin,2007,91(4):399-403.

[27]Pollastro R M,Jarvie D M,Hill R J,et al.Geologic framework of the mississippian barnett shale,barnett-paleozoictotal petroleum system,Bendarch Fort Worth Basin,Texas[J].AAPG Bulletin,2007,91(4):405-436.

[28]Schmoker J W.Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs[J].AAPG Bulletin,1981,65(7):1285-1298.

[29]Milici R C,Swezey C.Assessment of appalachian basin oil and gas resources:Devonian shale-middle and upper paleozoic total petroleum system[M].US Department of the Interior,US Geological Survey,2006.

[30]Jarvie M D,Hill J R,Pollastro M R.Assessment of the gas potential and yields from shales:The Barnett Shale model[C]//Cardott B J.Unconventional Energy Resources in the Southern Mid-Continent,2004 Conference,Oklahoma Geological Survey Circular,2004,110:34.

[31]Jarvie M D,Hill J R,Roble E M,et al.Unconventional shale-gas system:The Mississippian Barnett shale gas of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.

[32]Nie Haikuan,Zhang Jinchuan.Shale gas accumulation conditions and gas content calculation:A case study of Sichuan Basin and its periphery in the Lower Paleozoic[J].Acta Geologica Sinica,2012,86(2):349-361.[聂海宽,张金川.页岩气聚集条件及含气量计算——以四川盆地及其周缘下古生界为例[J].地质学报,2012,86(2):349-361.]

[33]Kennedy M J,Pevear D R,Hill R J.Mineral surface control of organic carbon in black shale[J].Science,2002,295(5555):657-660.

[34]Ji Liming,Qiu Junli,Zhang Tongwei.Experiments on methane adsorption of common clay minerals in shale[J].Earth Science:Journal of China University of Geosciences,2012,37(5):1043-1050.[吉利明,邱军利,张同伟,等.泥页岩主要黏土矿物组分甲烷吸附实验[J].地球科学:中国地质大学学报,2012,37(5):1043-1050.]

[35]Rouquerol J,Avnir D,Fairbridge C W,et al.Recommendations for the characterization of porous solids,international union of pure and applied chemistry[J].Pure and Applied Chemistry,1994,68:1739-1758.

[36]Marsh H.Adsorption methods to study microporosity in coals and carbons-a critique[J].Carbon,1987,25:49-58.

[37]Cui X,Bustin R M,Dipple G.Selective transport of CO2,CH4,and N2 in coals:Insights from modeling of experimental gas adsorption data[J].Fuel,2004,83:293-303.

[1] 刘琴琴,陈桂华,陈晓智,祝彦贺,杨小峰. 鄂尔多斯盆地L地区上古生界上石盒子组物源特征及其对储层的控制作用[J]. 天然气地球科学, 2018, 29(8): 1094-1101.
[2] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[3] 杨智峰,曾溅辉,韩菲. 鄂尔多斯盆地西南部延长组7段致密油充注影响因素分析[J]. 天然气地球科学, 2018, 29(7): 961-972.
[4] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[5] 郭睿良,陈小东,马晓峰,马静,[王琪],陈霖. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5): 665-674.
[6] 杨超,贺永红,马芳侠,雷裕红,陈义国. 鄂尔多斯盆地南部三叠系延长组有机流体活动期次划分[J]. 天然气地球科学, 2018, 29(5): 655-664.
[7] 葛岩,朱光辉,万欢,潘新志,黄志龙. 鄂尔多斯盆地东缘紫金山侵入构造对上古生界致密砂岩气藏形成和分布的影响[J]. 天然气地球科学, 2018, 29(4): 491-499.
[8] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[9] 屈雪峰,周晓峰,刘丽丽,丁黎. 鄂尔多斯盆地古峰庄—麻黄山地区长82低渗透砂岩致密化过程分析[J]. 天然气地球科学, 2018, 29(3): 337-348.
[10] 魏新善,魏柳斌,任军峰,蔡郑红,周黎霞. 鄂尔多斯盆地下古生界风化壳气藏差异性[J]. 天然气地球科学, 2018, 29(2): 178-188.
[11] 陈跃,马东民,吴圣,李新虎,方世跃,郭晨. 鄂尔多斯盆地东缘煤系伴生泥页岩孔隙特征及主控因素[J]. 天然气地球科学, 2018, 29(2): 189-198.
[12] 姚泾利, 胡新友, 范立勇, 刘新社, 季海锟, . 鄂尔多斯盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1465-1474.
[13] 赵志平,官大勇,韦阿娟,刘朋波,付立. 渤海海域新生界地层水化学特征及主控因素[J]. 天然气地球科学, 2017, 28(9): 1396-1405.
[14] 贾成业,贾爱林,韩品龙,王建君,袁贺,乔辉. 四川盆地志留系龙马溪组优质页岩储层特征与开发评价[J]. 天然气地球科学, 2017, 28(9): 1406-1415.
[15] 张建勇,倪新峰,吴兴宁,李文正,郝毅,陈娅娜,吕学菊,谷明峰,田瀚,朱茂. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!