天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

不同母质类型烃源岩排气效率

胡国艺,张水昌,田 华,陈建平,田兴旺,王飞宇,马行陟   

  1. 1.中国石油勘探开发研究院,北京 100083;
    2.中国石油油气地球化学重点实验室,北京 100083;
    3.中国矿业大学,北京 100083;4.中国石油大学(北京),北京 102249
  • 收稿日期:2013-11-05 修回日期:2013-12-20 出版日期:2014-01-10 发布日期:2014-01-10
  • 通讯作者: 胡国艺huguoyi69@petrochina.com.cn E-mail:huguoyi69@petrochina.com.cn
  • 作者简介:胡国艺(1968-),男,安徽桐城人,高级工程师,博士,主要从事天然气地质与地球化学研究. E-mail:huguoyi69@petrochina.com.cn.
  • 基金资助:

    国家科技重大专项(编号:2011ZX05007-001);中国石油科学研究与技术开发项目(编号:2011B-0601)联合资助.

Gas Relative Expulsion Efficiency of Source Rocks with Different Types of Kerogen

HU Guo-yi,ZHANG Shui-chang,TIAN Hua,CHEN Jian-ping,TIAN Xing-wang,WANG Fei-yu,MA Xing-zhi   

  1. 1.Research Institute of petroleum Exploration and Development,Beijing 100083,China;
    2.Key Laboratory of Petroleum Geochemistry,Beijing 100083,China;
    3.China University of Mining and Technology,Beijing 100083,China;
    4.China University of Petroleum,Beijing 102249,China
  • Received:2013-11-05 Revised:2013-12-20 Online:2014-01-10 Published:2014-01-10

摘要:

随着全球页岩气等非常规油气勘探的不断加强,烃源岩排气效率的研究越来越受到关注。根据页岩或煤中实测或理论计算的含气量数据,以及在不同热演化阶段的生气量,探讨了不同母质类型烃源岩在不同热演化阶段的排气效率。煤系烃源岩和海相Ⅰ—Ⅱ1型烃源岩排气效率随着成熟度的增加,排气效率逐渐增加,但两者存在很大的差异,煤系烃源岩排气效率很高,在RO=1.0%时为75%,在RO=5.5%时高达90%以上,高排气效率表明,煤系烃源岩生成的天然气绝大部分都运移到了储层,成为常规天然气和致密砂岩气的主要气源。与煤系烃源岩相比,海相Ⅰ—Ⅱ1型烃源岩排气效率较低,大部分低于70%,低排气效率结果表明,在页岩体系中生成的天然气相当一部分仍滞留在烃源岩中,残留在页岩中的天然气为页岩气的富集提供了物质基础。

关键词: 烃源岩, 页岩气, 生气量, 含气量, 排气效率

Abstract:

With increasing of unconventional gases exploration(such as shale gas),the gas relative expulsion efficiency of source rocks is becoming an interesting topic.Based on data of gas content gotten from porosity and adsorptivity in the laboratory measurement and the theorical calculation,the expulsion efficiency of gas from source rocks with different types of kerogen and maturities has been studied.With the increasing of the maturity,the expulsion efficiency is becoming larger gradually.But there are great differences existed between coal-measures and marine source rocks with type Ⅰ-Ⅱ1 kerogen.The expulsion efficiency of gas from the coal measures is very high and is up to 75%,even more than 90% at the thermal maturity(RO) of 1.0%.The result shows that the gas from the coal measures was expulsed into the reservoir mostly and became an important source of the large coal-derived gas field.Compared with the coal measures,the gas expulsion efficiency for marine source rocks with type Ⅰ-Ⅱ1 kerogen is relatively lower and is mostly less than 70%.The gas from the shale mostly retains in the source rocks and become the important source of shale gas resource.

Key words: Source rock, Shale gas, Gas generation amount, Gas content, Gas expulsion efficiency

中图分类号: 

  • TE122.1+13
[1] Tissot B.Geochemistry of resins and asphaltenes[J].Revue de L′Institut Francais du Petrole,1984,39(5):561-572.

[2] Chen Jianping,Sun Yongge,Zhong Ningning,et al.The expulsion efficiency and expulsion mode of lake superior hydrocarbon source rock[C]// Chinese Society of Mineralogy Petrology and Geochemistry.14th Annual Conference Proceedings of Chinese Society of Mineralogy Petrology and Geochemistry.2013:562-563.[陈建平,孙永革,钟宁宁,等.湖相优质烃源岩排烃效率与排烃模式[C]//中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第14届学术年会文集.2013:562-563.]

[3] Liu Shaopeng,Zhou Shixin,Wang Baozhong,et al.Relationship between industrial indexes and source rock evaluation parameters of oil shale[J].Natural Gas Geoscience,2012,23(3):562-569.[柳少鹏,周世新,王保忠,等.烃源岩评价参数与油页岩品质指标内在关系探讨[J].天然气地球科学,2012,23(3):562-569.]

[4]Wu Yukun,Hu Mingyi,Liu Zhifeng et al.The sedimentary facies and coal measures source rock distribution of Yacheng Formation in Yabei Sag,Qiongdongnan Basin[J].Natural Gas Geoscience,2013,24(3):582-590.[吴玉坤,胡明毅,刘志峰,等.琼东南盆地崖北凹陷崖城组沉积相及煤系烃源岩分布[J].天然气地球科学,2013,24(3):582-590.]

[5] Chen Jianping,Zhao Changyi,He Zhonghua.Criteria for evaluation the hydrocarbon generating potential of organic matter in coal measures[J].Petroleum Exploration and Development,1997,24(1):1-5.[陈建平,赵长毅,何忠华.煤系有机质生烃潜力评价标准探讨[J].石油勘探与开发,1997,24(1):1-5.]

[6]Zhang Shuichang,Liang Digang,Zhang Dajiang.Evaluation criteria for Paleozoic effective hydrocarbon source rocks[J].Petroleum Exploration and Development,2002,29(2):8-12.[张水昌,梁狄刚,张大江.关于古生界烃源岩有机质丰度评价标准[J].石油勘探与开发,2002,29(2):8-12.]

[7] Hu Guoyi,Li Zhisheng,Luo Xia,et al.Characteristic contrast of organic matter under two kinds of thermal simulation system[J].Acta Sedimentologica Sinica,2004,22(4):718-723.[胡国艺,李志生,罗霞,等.两种热模拟体系下有机质生气特征对比[J].沉积学报,2004,22(4):718-723.]

[8] Mi Jingkui,Dai Jinxing,Zhang Shuichang,et al.Study on the generating potential of coal in  two different system[J].Natural Gas Geoscience,2007,18(2):245-248.[米敬奎,戴金星,张水昌,等.煤在2种不同体系的生气能力研究[J].天然气地球科学,2007,18(2):245-248.]

[9] Cramer B,Faber E,Gerling P,et al.Reaction kinetics of stable carbon isotopes in natural gas-insights from dry,open system pyrolysis experiments[J].Energy & Fuels,2001,15(3):517-532.

[10] Tang Y,Perry J K,Jenden P D,et al.Mathematical modeling of stable carbon isotope ratios in natural gases[J].Geochimica et Cosmochimica Acta,2000,64(15):2673-2687.

[11] Wang Yunpeng,Zhao Changyi,Wang Zhaoyun,et al.Using the method of hydrocarbon generation kinetics to determine the main generating phase and preliminary application of marine organic matter[J].Petroleum Exploration and Development,2005,32(4):153-158.[王云鹏,赵长毅,王兆云,等.利用生烃动力学方法确定海相有机质的主生气期及其初步应用[J].石油勘探与开发,2005,32(4):153-158.]

[12] Li Xianqing,Xiao Xianming,Mi Jingkui,et al.Kinetic parameters of methane generated from source rocks and its application in the Kuqa Depression of the Tarim Basin[J].Acta Geologica Sinica,2005,79(1):133-142.[李贤庆,肖贤明,米敬奎,等.塔里木盆地库车坳陷烃源岩生成甲烷的动力学参数及其应用[J].地质学报,2005,79(1):133-142.]

[13] Li Mingcheng.Oil and Gas Migration[M].Beijing:Petroleum Industry Press,2004.[李明诚.石油与天然气运移[M].北京:石油工业出版社,2004.]

[14] Leythaeuser D,Schaefer R G,Radke M.On the primary migration of petroleum[C]// World Petroleum Congress.12th World Petroleum Congress Proceedings 2.1987:22-236.[15] Cooles G P.Calculation of petroleum masses generated and expelled from source rock[J].Organic Geochemistry,1986,10(3):235-245.

[16] Pepper I L.Physiological adaptation of rhizobia to improve nitrogen fixation in desert environments[M]// Bishay A,Dregne H.Desert Development Part 1:Desert Agriculture,Ecology and Biology.New York:Harwood Academic Publishers,[HJ2mm]1995:293-305.

[17] Pepper I L,Pillai S D.PCR amplification of DNA from root nodules[M]// Van Elsas J D,Trevors J T.Nucleic Acids in the Environment.Berlin,Heidelberg:Springer 1995:141-151.[18] Dai Jinxing,Hu Anping,Yang Chun,et al.Newest achievements on gas exploration and its geoscientific theories in China[J].Natural Gas Industry,2006,26(12):1-5.[戴金星,胡安平,杨春,等.中国天然气勘探及其地学理论的主要新进展[J].天然气工业,2006,26(12):1-5.]

[19] Xiao Zhihua,Hu Guoyi,Zhong Ningning,et al.The Characteristics of gas generation from coal measures in Tarim Basin[J].Journal of Southwest Petroleum University:Science & Technology Edition,2009,31(1):9-13.[肖芝华,胡国艺,钟宁宁,等.塔里木盆地煤系烃源岩产气率变化特征[J].西南石油大学学报:自然科学版,2009,31(1):9-13.]

[20] Mahlstedt N,Horsfield N,Dieckmann V.Second order reactions as a prelude to gas generation at high maturity[J].Organic Geochemistry,2008,39:1125-1129.

[21] Dieckmann V,Ondrak R,Cramer B,et al.Deep basin gas:New insights from kinetic modeling and isotopic fractionation in deep-formed gas precursors[J].Marine and Petroleum Geology,2006,23(2):183-199.

[22] Erdmann M,Horsfield B.Enhanced late gas generation potential of petroleum source rocks via recombination reactions:Evidence from the Norwegian North Sea[J].Geochimica et Cosmochimica Acta,2006,70(15):3943-3956.

[23] Zhang Shuichang,Hu Guoyi,Mi Jingkui,et al.Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J].Acta Petrolei Sinica,2013,34(supplement1):41-50.[张水昌,胡国艺,米敬奎,等.三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J].石油学报,2013,34(增刊1):41-50.]

[24] Dai Jinxing,Qi Houfa,Wang Shaochang,et al.The geochemical Characteristics,Forming Conditions of Coal Formed Gas Reservoir and Resource Evaluation of China′s Coal Measured Gas and Oil[M].Beijing:Petroleum Industry Press,2001:43-45.[戴金星,戚厚发,王少昌,等.我国煤系的气油地球化学特征、煤成气藏形成条件及资源评价[M].北京:石油工业出版社,2001:43-45.]

[25] He Kun,Zhang Shuichang,Wang Xiaomei,et al.Effect of gas generation from in-situ cracking of residual bitumen in source on hydrocarbon generation from organic matter[J].Acta Petrolei Sinica,2013,34(supplement1):57-64.[何坤,张水昌,王晓梅,等.源内残留沥青原位裂解生气对有机质生烃的影响[J].石油学报,2013,34(增1):57-64.]

[26] Dong Dazhong,Zou Caineng,Yang Hua,et al.Progress and prospects of shale gas exploration and development in China[J].Acta Petrolei Sinica,2012,33(supplement1):107-114.[董大忠,邹才能,杨桦,等.中国页岩气勘探开发进展与发展前景[J].石油学报,2012,33(增刊1):107-114.]

 

 
[1] 唐友军, 郑磊, 李永飞, 郜晓勇, 宗文明, 孙求实, 何大祥. 凌源—宁城盆地牛营子坳陷侏罗系海房沟组烃源岩芳烃地球化学特征及其地质意义[J]. 天然气地球科学, 2019, 30(3): 433-446.
[2] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[3] 曾凡辉, 彭凡, 郭建春, 钟华, 向建华. 考虑页岩缝宽动态变化的微裂缝气体质量传输模型[J]. 天然气地球科学, 2019, 30(2): 237-246.
[4] 刘树根, 孙玮, 宋金民, 雍自权, 王浩, 赵聪. 四川盆地中三叠统雷口坡组天然气勘探的关键地质问题[J]. 天然气地球科学, 2019, 30(2): 151-167.
[5] 张磊, 徐兵祥, 辛翠平, 乔向阳, 穆景福, 许阳, 韩长春. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256.
[6] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[7] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[8] 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110.
[9] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[10] 张帆, 冉清昌, 吴玉明, 任志高. 松辽盆地北部古中央隆起带天然气地球化学特征及成藏条件[J]. 天然气地球科学, 2019, 30(1): 126-132.
[11] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[12] 于聪, 胡国艺, 陈瑞银. 不同煤系烃源岩热解气地球化学差异及其在苏里格气田的应用[J]. 天然气地球科学, 2019, 30(1): 133-142.
[13] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[14] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[15] 傅宁,刘建升. 北部湾盆地流二段3类烃源岩的生烃成藏特征[J]. 天然气地球科学, 2018, 29(7): 932-941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!